Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 36(10): 109666, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496254

RESUMEN

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Axones/metabolismo , Roturas del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , ADN-Topoisomerasas de Tipo I/efectos de los fármacos , Expresión Génica/fisiología , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Proyección Neuronal/fisiología , Nervio Ciático/metabolismo
2.
Mol Neurobiol ; 56(6): 3948-3957, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30232777

RESUMEN

Axotomy results in permanent loss of function after brain and spinal cord injuries due to the minimal regenerative propensity of the adult central nervous system (CNS). To identify pharmacological enhancers of axon regeneration, 960 compounds were screened for cortical neuron axonal regrowth using an in vitro cortical scrape assay. Diltiazem, verapamil, and bromopride were discovered to facilitate axon regeneration in rat cortical cultures, in the presence of chondroitin sulfate proteoglycans (CSPGs). Diltiazem, an L-type calcium channel blocker (L-CCB), also promotes axon outgrowth in adult primary mouse dorsal root ganglion (DRG) and induced human sensory (iSensory) neurons.


Asunto(s)
Axones/fisiología , Diltiazem/farmacología , Regeneración Nerviosa/efectos de los fármacos , Amidas/farmacología , Animales , Axones/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Sinergismo Farmacológico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Humanos , Ratones Endogámicos C57BL , Piridinas/farmacología , Ratas Sprague-Dawley
3.
Cell Rep ; 24(7): 1865-1879.e9, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110642

RESUMEN

We generated a knockout mouse for the neuronal-specific ß-tubulin isoform Tubb3 to investigate its role in nervous system formation and maintenance. Tubb3-/- mice have no detectable neurobehavioral or neuropathological deficits, and upregulation of mRNA and protein of the remaining ß-tubulin isotypes results in equivalent total ß-tubulin levels in Tubb3-/- and wild-type mice. Despite similar levels of total ß-tubulin, adult dorsal root ganglia lacking TUBB3 have decreased growth cone microtubule dynamics and a decreased neurite outgrowth rate of 22% in vitro and in vivo. The effect of the 22% slower growth rate is exacerbated for sensory recovery, where fibers must reinnervate the full volume of the skin to recover touch function. Overall, these data reveal that, while TUBB3 is not required for formation of the nervous system, it has a specific role in the rate of peripheral axon regeneration that cannot be replaced by other ß-tubulins.


Asunto(s)
Regeneración Nerviosa/genética , Proyección Neuronal/genética , Isoformas de Proteínas/genética , Tubulina (Proteína)/genética , Potenciales de Acción/fisiología , Animales , Femenino , Ganglios Espinales/lesiones , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Plasticidad Neuronal/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal , Tubulina (Proteína)/deficiencia
4.
Cell Rep ; 16(6): 1664-1676, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27477284

RESUMEN

How can cells sense their own size to coordinate biosynthesis and metabolism with their growth needs? We recently proposed a motor-dependent bidirectional transport mechanism for axon length and cell size sensing, but the nature of the motor-transported size signals remained elusive. Here, we show that motor-dependent mRNA localization regulates neuronal growth and cycling cell size. We found that the RNA-binding protein nucleolin is associated with importin ß1 mRNA in axons. Perturbation of nucleolin association with kinesins reduces its levels in axons, with a concomitant reduction in axonal importin ß1 mRNA and protein levels. Strikingly, subcellular sequestration of nucleolin or importin ß1 enhances axonal growth and causes a subcellular shift in protein synthesis. Similar findings were obtained in fibroblasts. Thus, subcellular mRNA localization regulates size and growth in both neurons and cycling cells.


Asunto(s)
Tamaño de la Célula , Neuronas Motoras/metabolismo , Fosfoproteínas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Axones/metabolismo , Ratones Transgénicos , Neurogénesis , Biosíntesis de Proteínas/fisiología , Nucleolina
6.
Neuron ; 89(5): 956-70, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26898779

RESUMEN

The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology.


Asunto(s)
Axones/fisiología , Ganglios Espinales/citología , Regeneración Nerviosa/fisiología , Neuronas/citología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Animales , Animales Recién Nacidos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora) , Canales Iónicos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Regeneración Nerviosa/genética , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
7.
Neuron ; 86(5): 1215-27, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26004914

RESUMEN

Axon regeneration in the CNS requires reactivating injured neurons' intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater sprouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. Inhibition of Activin signaling in CAST/Ei mice diminishes their CNS regenerative capacity, whereas its activation in C57BL/6 animals boosts regeneration. This screen demonstrates that mammalian CNS regeneration can occur and reveals a molecular pathway that contributes to this ability.


Asunto(s)
Axones/fisiología , Ganglios Espinales/fisiología , Regeneración Nerviosa/fisiología , Neuropatía Ciática/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Neuropatía Ciática/patología , Traumatismos de la Médula Espinal/patología
8.
Nat Neurosci ; 18(1): 17-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25420066

RESUMEN

Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes, but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. We identified five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons. These recapitulated the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons, as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibited TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we found that the technique was able to reveal previously unknown aspects of human disease phenotypes in vitro.


Asunto(s)
Fibroblastos , Modelos Neurológicos , Nociceptores , Dolor/fisiopatología , Células Receptoras Sensoriales , Animales , Disautonomía Familiar/patología , Fenómenos Electrofisiológicos/fisiología , Humanos , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Enfermedades del Sistema Nervioso Periférico/patología , Factores de Transcripción
9.
J Biol Chem ; 286(20): 18026-36, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454605

RESUMEN

Nogo-A limits axon regeneration and functional recovery after central nervous system injury in adult mammals. Three regions of Nogo-A (Nogo-A-24, Nogo-66, and Nogo-C39) interact with the neuronal Nogo-66 receptor 1 (NgR1). Nogo-66 also interacts with a structurally unrelated cell surface receptor, paired immunoglobulin-like receptor (PirB). We show here that the other two NgR1-interacting domains, Nogo-A-24 and Nogo-C39, also bind to PirB with high affinity. A purified 22-kDa protein containing all three NgR1- and PirB-interacting domains (Nogo-22) is a substantially more potent growth cone-collapsing molecule than Nogo-66 for chick dorsal root ganglion neurons and mature cortical neurons. Moreover, Nogo-22 inhibits axon regeneration of mature cortical neurons in vitro more potently than does Nogo-66. Although all three NgR1-interacting domains of Nogo-A also interact with PirB, expression of PirB in mature cortical cultures is nearly undetectable. Consistent with a relatively minor role for PirB in mature cortical neurons, Nogo-22 inhibition of axon regeneration is abolished by genetic deletion of NgR1. Thus, NgR1 is the predominant receptor for Nogo-22 in regenerating cortical neurons.


Asunto(s)
Axones/metabolismo , Corteza Cerebral/metabolismo , Proteínas de la Mielina/metabolismo , Receptores de Superficie Celular/metabolismo , Regeneración/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Pollos , Chlorocebus aethiops , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Ratones , Proteínas de la Mielina/genética , Proteínas Nogo , Receptor Nogo 1 , Estructura Terciaria de Proteína , Receptores de Superficie Celular/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
10.
Results Probl Cell Differ ; 48: 339-51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19582408

RESUMEN

Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long-distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsic growth capacity of the neuron influence regenerative success. This chapter discusses determinants of axon regeneration in the PNS and CNS.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/fisiología , Regeneración Nerviosa , Sistema Nervioso Periférico/fisiología , Animales , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas Ricas en Prolina del Estrato Córneo/genética , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...