Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Adv ; 9(10): eade1285, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897939

RESUMEN

Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética , Edición Génica , Bacterias/genética , ADN
3.
Metab Eng ; 67: 250-261, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34265401

RESUMEN

Poly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2IIA3IIBIIA1II from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, ß-ketoadipic acid (ßKA) by deletion of pcaIJ. Using this strain, we demonstrate production of 15.1 g/L ßKA from BHET at 76% molar yield in bioreactors and conversion of catalytically depolymerized PET to ßKA. Overall, this work highlights the potential of tandem catalytic deconstruction and biological conversion as a means to upcycle waste PET.


Asunto(s)
Tereftalatos Polietilenos , Pseudomonas putida , Adipatos , Burkholderiales , Etilenos , Hidrolasas , Ácidos Ftálicos , Pseudomonas putida/genética , Rhodococcus
4.
Nat Commun ; 12(1): 2261, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859194

RESUMEN

Expanding the portfolio of products that can be made from lignin will be critical to enabling a viable bio-based economy. Here, we engineer Pseudomonas putida for high-yield production of the tricarboxylic acid cycle-derived building block chemical, itaconic acid, from model aromatic compounds and aromatics derived from lignin. We develop a nitrogen starvation-detecting biosensor for dynamic two-stage bioproduction in which itaconic acid is produced during a non-growth associated production phase. Through the use of two distinct itaconic acid production pathways, the tuning of TCA cycle gene expression, deletion of competing pathways, and dynamic regulation, we achieve an overall maximum yield of 56% (mol/mol) and titer of 1.3 g/L from p-coumarate, and 1.4 g/L titer from monomeric aromatic compounds produced from alkali-treated lignin. This work illustrates a proof-of-principle that using dynamic metabolic control to reroute carbon after it enters central metabolism enables production of valuable chemicals from lignin at high yields by relieving the burden of constitutively expressing toxic heterologous pathways.


Asunto(s)
Lignina/metabolismo , Ingeniería Metabólica/métodos , Pseudomonas putida/metabolismo , Succinatos/metabolismo , Álcalis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Basidiomycota/enzimología , Basidiomycota/genética , Técnicas Biosensibles , Burkholderia/enzimología , Burkholderia/genética , Carbono/metabolismo , Ciclo del Ácido Cítrico/genética , Ácidos Cumáricos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microbiología Industrial/métodos , Lignina/química , Prueba de Estudio Conceptual , Pseudomonas putida/genética
6.
Microb Biotechnol ; 13(1): 290-298, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31468725

RESUMEN

Microbial conversion offers a promising strategy for overcoming the intrinsic heterogeneity of the plant biopolymer, lignin. Soil microbes that natively harbour aromatic-catabolic pathways are natural choices for chassis strains, and Pseudomonas putida KT2440 has emerged as a viable whole-cell biocatalyst for funnelling lignin-derived compounds to value-added products, including its native carbon storage product, medium-chain-length polyhydroxyalkanoates (mcl-PHA). In this work, a series of metabolic engineering targets to improve mcl-PHA production are combined in the P. putida chromosome and evaluated in strains growing in a model aromatic compound, p-coumaric acid, and in lignin streams. Specifically, the PHA depolymerase gene phaZ was knocked out, and the genes involved in ß-oxidation (fadBA1 and fadBA2) were deleted. Additionally, to increase carbon flux into mcl-PHA biosynthesis, phaG, alkK, phaC1 and phaC2 were overexpressed. The best performing strain - which contains all the genetic modifications detailed above - demonstrated a 53% and 200% increase in mcl-PHA titre (g l-1 ) and a 20% and 100% increase in yield (g mcl-PHA per g cell dry weight) from p-coumaric acid and lignin, respectively, compared with the wild type strain. Overall, these results present a promising strain to be employed in further process development for enhancing mcl-PHA production from aromatic compounds and lignin.


Asunto(s)
Polihidroxialcanoatos , Pseudomonas putida , Lignina , Ingeniería Metabólica , Pseudomonas putida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA