Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10975, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744876

RESUMEN

Common wheat (Triticum aestivum L.) is a major staple food crop, providing a fifth of food calories and proteins to the world's human population. Despite the impressive growth in global wheat production in recent decades, further increases in grain yield are required to meet future demands. Here we estimated genetic gain and genotype stability for grain yield (GY) and determined the trait associations that contributed uniquely or in combination to increased GY, through a retrospective analysis of top-performing genotypes selected from the elite spring wheat yield trial (ESWYT) evaluated internationally during a 14-year period (2003 to 2016). Fifty-six ESWYT genotypes and four checks were sown under optimally irrigated conditions in three phenotyping trials during three consecutive growing seasons (2018-2019 to 2020-2021) at Norman E. Borlaug Research Station, Ciudad Obregon, Mexico. The mean GY rose from 6.75 (24th ESWYT) to 7.87 t ha-1 (37th ESWYT), representing a cumulative increase of 1.12 t ha-1. The annual genetic gain for GY was estimated at 0.96% (65 kg ha-1 year-1) accompanied by a positive trend in genotype stability over time. The GY progress was mainly associated with increases in biomass (BM), grain filling rate (GFR), total radiation use efficiency (RUE_total), grain weight per spike (GWS), and reduction in days to heading (DTH), which together explained 95.5% of the GY variation. Regression lines over the years showed significant increases of 0.015 kg m-2 year-1 (p < 0.01), 0.074 g m-2 year-1 (p < 0.05), and 0.017 g MJ-1 year-1 (p < 0.001) for BM, GFR, and RUE_total, respectively. Grain weight per spike exhibited a positive but no significant trend (0.014 g year-1, p = 0.07), whereas a negative tendency for DTH was observed (- 0.43 days year-1, p < 0.001). Analysis of the top ten highest-yielding genotypes revealed differential GY-associated trait contributions, demonstrating that improved GY can be attained through different mechanisms and indicating that no single trait criterion is adopted by CIMMYT breeders for developing new superior lines. We conclude that CIMMYT's Bread Wheat Breeding Program has continued to deliver adapted and more productive wheat genotypes to National partners worldwide, mainly driven by enhancing RUE_total and GFR and that future yield increases could be achieved by intercrossing genetically diverse top performer genotypes.


Asunto(s)
Grano Comestible , Genotipo , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Fenotipo , Estaciones del Año , México
2.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37220903

RESUMEN

MOTIVATION: Developing new crop varieties with superior performance is highly important to ensure robust and sustainable global food security. The speed of variety development is limited by long field cycles and advanced generation selections in plant breeding programs. While methods to predict yield from genotype or phenotype data have been proposed, improved performance and integrated models are needed. RESULTS: We propose a machine learning model that leverages both genotype and phenotype measurements by fusing genetic variants with multiple data sources collected by unmanned aerial systems. We use a deep multiple instance learning framework with an attention mechanism that sheds light on the importance given to each input during prediction, enhancing interpretability. Our model reaches 0.754 ± 0.024 Pearson correlation coefficient when predicting yield in similar environmental conditions; a 34.8% improvement over the genotype-only linear baseline (0.559 ± 0.050). We further predict yield on new lines in an unseen environment using only genotypes, obtaining a prediction accuracy of 0.386 ± 0.010, a 13.5% improvement over the linear baseline. Our multi-modal deep learning architecture efficiently accounts for plant health and environment, distilling the genetic contribution and providing excellent predictions. Yield prediction algorithms leveraging phenotypic observations during training therefore promise to improve breeding programs, ultimately speeding up delivery of improved varieties. AVAILABILITY AND IMPLEMENTATION: Available at https://github.com/BorgwardtLab/PheGeMIL (code) and https://doi.org/doi:10.5061/dryad.kprr4xh5p (data).


Asunto(s)
Aprendizaje Profundo , Fenómica , Triticum/genética , Fitomejoramiento/métodos , Selección Genética , Fenotipo , Genotipo , Genómica/métodos , Grano Comestible/genética
4.
Front Plant Sci ; 13: 880138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061764

RESUMEN

Developing wheat varieties with durable resistance is a core objective of the International Maize and Wheat Improvement Center (CIMMYT) and many other breeding programs worldwide. The CIMMYT advanced wheat line "Mucuy" displayed high levels of resistance to stripe rust (YR) and leaf rust (LR) in field evaluations in Mexico and several other countries. To determine the genetic basis of YR and LR resistance, 138 F5 recombinant inbred lines (RILs) derived from the cross of Apav#1× Mucuy were phenotyped for YR responses from 2015 to 2020 at field sites in India, Kenya, and Mexico, and LR in Mexico. Seedling phenotyping for YR and LR responses was conducted in the greenhouse in Mexico using the same predominant races as in field trials. Using 12,681 polymorphic molecular markers from the DArT, SNP, and SSR genotyping platforms, we constructed genetic linkage maps and QTL analyses that detected seven YR and four LR resistance loci. Among these, a co-located YR/LR resistance loci was identified as Yr29/Lr46, and a seedling stripe rust resistance gene YrMu was mapped on the 2AS/2NS translocation. This fragment also conferred moderate adult plant resistance (APR) under all Mexican field environments and in one season in Kenya. Field trial phenotyping with Lr37-virulent Puccinia triticina races indicated the presence of an APR QTL accounting for 18.3-25.5% of the LR severity variation, in addition to a novel YR resistance QTL, QYr.cim-3DS, derived from Mucuy. We developed breeder-friendly KASP and indel molecular markers respectively for Yr29/Lr46 and YrMu. The current study validated the presence of known genes and identified new resistance loci, a QTL combination effect, and flanking markers to facilitate accelerated breeding for genetically complex, durable rust resistance.

5.
Plant Genome ; 15(4): e20254, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36043341

RESUMEN

The success of genomic selection (GS) in breeding schemes relies on its ability to provide accurate predictions of unobserved lines at early stages. Multigeneration data provides opportunities to increase the training data size and thus, the likelihood of extracting useful information from ancestors to improve prediction accuracy. The genomic best linear unbiased predictions (GBLUPs) are performed by borrowing information through kinship relationships between individuals. Multigeneration data usually becomes heterogeneous with complex family relationship patterns that are increasingly entangled with each generation. Under these conditions, historical data may not be optimal for model training as the accuracy could be compromised. The sparse selection index (SSI) is a method for training set (TRN) optimization, in which training individuals provide predictions to some but not all predicted subjects. We added an additional trimming process to the original SSI (trimmed SSI) to remove less important training individuals for prediction. Using a large multigeneration (8 yr) wheat (Triticum aestivum L.) grain yield dataset (n = 68,836), we found increases in accuracy as more years are included in the TRN, with improvements of ∼0.05 in the GBLUP accuracy when using 5 yr of historical data relative to when using only 1 yr. The SSI method showed a small gain over the GBLUP accuracy but with an important reduction on the TRN size. These reduced TRNs were formed with a similar number of subjects from each training generation. Our results suggest that the SSI provides a more stable ranking of genotypes than the GBLUP as the TRN becomes larger.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Fitomejoramiento/métodos , Fenotipo , Genómica/métodos , Genoma
6.
Front Plant Sci ; 13: 920682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873987

RESUMEN

Spring bread wheat adaptation to diverse environments is supported by various traits such as phenology and plant architecture. A large-scale genome-wide association study (GWAS) was designed to investigate and dissect the genetic architecture of phenology affecting adaptation. It used 48 datasets from 4,680 spring wheat lines. For 8 years (2014-2021), these lines were evaluated for days to heading (DH) and maturity (DM) at three sites: Jabalpur, Ludhiana, and Samastipur (Pusa), which represent the three major Indian wheat-producing zones: the Central Zone (CZ), North-Western Plain Zone (NWPZ), and North-Eastern Plain Zone (NEPZ), respectively. Ludhiana had the highest mean DH of 103.8 days and DM of 148.6 days, whereas Jabalpur had the lowest mean DH of 77.7 days and DM of 121.6 days. We identified 119 markers significantly associated with DH and DM on chromosomes 5B (76), 2B (18), 7D (10), 4D (8), 5A (1), 6B (4), 7B (1), and 3D (1). Our results clearly indicated the importance of the photoperiod-associated gene (Ppd-B1) for adaptation to the NWPZ and the Vrn-B1 gene for adaptation to the NEPZ and CZ. A maximum variation of 21.1 and 14% was explained by markers 2B_56134146 and 5B_574145576 linked to the Ppd-B1 and Vrn-B1 genes, respectively, indicating their significant role in regulating DH and DM. The results provide important insights into the genomic regions associated with the two phenological traits that influence adaptation to the major wheat-producing zones in India.

7.
Front Plant Sci ; 13: 894528, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837449

RESUMEN

Leaf rust and stripe rust are important wheat diseases worldwide causing significant losses where susceptible varieties are grown. Resistant cultivars offer long-term control and reduce the use of hazardous chemicals, which can be detrimental to both human health and the environment. Land races have been a valuable resource for mining new genes for various abiotic and biotic stresses including wheat rusts. Afghan wheat landrace "KU3067" displayed high seedling infection type (IT) for leaf rust and low IT for stripe rust; however, it displayed high levels of field resistance for both rusts when tested for multiple seasons against the Mexican rust isolates. This study focused on identifying loci-conferring seedling resistance to stripe rust, and also loci-conferring adult plant resistance (APR) against the Mexican races of leaf rust and stripe rust. A backcrossed inbred line (BIL) population advanced to the BC1F5 generation derived from the cross of KU3067 and Apav (triple rust susceptible line) was used for both, inheritance and QTL mapping studies. The population and parents were genotyped with Diversity Arrays Technology-genotyping-by-sequencing (DArT-Seq) and phenotyped for leaf rust and stripe rust response at both seedling and adult plant stages during multiple seasons in Mexico with relevant pathotypes. Mapping results identified an all-stage resistance gene for stripe rust, temporarily designated as YrKU, on chromosome 7BL. In total, six QTL-conferring APR to leaf rust on 1AS, 2AL, 4DL, 6BL, 7AL, and 7BL, and four QTL for stripe rust resistance on 1BS, 2AL, 4DL, and 7BL were detected in the analyses. Among these, pleiotropic gene Lr67/Yr46 on 4DL with a significantly large effect is the first report in an Afghan landrace-conferring resistance to both leaf and stripe rusts. QLr.cim-7BL/YrKU showed pleiotropic resistance to both rusts and explained 7.5-17.2 and 12.6-19.3% of the phenotypic variance for leaf and stripe rusts, respectively. QYr.cim-1BS and QYr.cim-2AL detected in all stripe environments with phenotypic variance explained (PVE) 12.9-20.5 and 5.4-12.5%, and QLr.cim-6BL are likely to be new. These QTL and their closely linked markers will be useful for fine mapping and marker-assisted selection (MAS) in breeding for durable resistance to multiple rust diseases.

8.
Front Plant Sci ; 13: 903819, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845653

RESUMEN

Accelerating breeding efforts for developing biofortified bread wheat varieties necessitates understanding the genetic control of grain zinc concentration (GZnC) and grain iron concentration (GFeC). Hence, the major objective of this study was to perform genome-wide association mapping to identify consistently significant genotyping-by-sequencing markers associated with GZnC and GFeC using a large panel of 5,585 breeding lines from the International Maize and Wheat Improvement Center. These lines were grown between 2018 and 2021 in an optimally irrigated environment at Obregon, Mexico, while some of them were also grown in a water-limiting drought-stressed environment and a space-limiting small plot environment and evaluated for GZnC and GFeC. The lines showed a large and continuous variation for GZnC ranging from 27 to 74.5 ppm and GFeC ranging from 27 to 53.4 ppm. We performed 742,113 marker-traits association tests in 73 datasets and identified 141 markers consistently associated with GZnC and GFeC in three or more datasets, which were located on all wheat chromosomes except 3A and 7D. Among them, 29 markers were associated with both GZnC and GFeC, indicating a shared genetic basis for these micronutrients and the possibility of simultaneously improving both. In addition, several significant GZnC and GFeC associated markers were common across the irrigated, water-limiting drought-stressed, and space-limiting small plots environments, thereby indicating the feasibility of indirect selection for these micronutrients in either of these environments. Moreover, the many significant markers identified had minor effects on GZnC and GFeC, suggesting a quantitative genetic control of these traits. Our findings provide important insights into the complex genetic basis of GZnC and GFeC in bread wheat while implying limited prospects for marker-assisted selection and the need for using genomic selection.

9.
Front Plant Sci ; 13: 835095, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310648

RESUMEN

Spot blotch caused by the fungus Bipolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions of the world. Hence, the major objective of this study was to identify consistent genotyping-by-sequencing (GBS) markers associated with spot blotch resistance using genome-wide association mapping on a large set of 6,736 advanced bread wheat breeding lines from the International Maize and Wheat Improvement Center. These lines were phenotyped as seven panels at Agua Fria, Mexico between the 2013-2014 and 2019-2020 crop cycles. We identified 214 significant spot blotch associated GBS markers in all the panels, among which only 96 were significant in more than one panel, indicating a strong environmental effect on the trait and highlights the need for multiple phenotypic evaluations to identify lines with stable spot blotch resistance. The 96 consistent GBS markers were on chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5B, 5D, 6B, 7A, 7B, and 7D, including markers possibly linked to the Lr46, Sb1, Sb2 and Sb3 genes. We also report the association of the 2NS translocation from Aegilops ventricosa with spot blotch resistance in some environments. Moreover, the spot blotch favorable alleles at the 2NS translocation and two markers on chromosome 3BS (3B_2280114 and 3B_5601689) were associated with increased grain yield evaluated at several environments in Mexico and India, implying that selection for favorable alleles at these loci could enable simultaneous improvement for high grain yield and spot blotch resistance. Furthermore, a significant relationship between the percentage of favorable alleles in the lines and their spot blotch response was observed, which taken together with the multiple minor effect loci identified to be associated with spot blotch in this study, indicate quantitative genetic control of resistance. Overall, the results presented here have extended our knowledge on the genetic basis of spot blotch resistance in bread wheat and further efforts to improve genetic resistance to the disease are needed for reducing current and future losses under climate change.

10.
Theor Appl Genet ; 135(5): 1541-1550, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35199199

RESUMEN

KEY MESSAGE: Adult plant stem rust resistance locus, QSrGH.cs-2AL, was identified in durum wheat Glossy Huguenot and mendelised as Sr63. Markers closely linked with Sr63 were developed. An F3 population from a Glossy Huguenot (GH)/Bansi cross used in a previous Australian study was advanced to F6 for molecular mapping of adult plant stem rust resistance. Maturity differences among F6 lines confounded assessments of stem rust response. GH was crossed with a stem rust susceptible F6 recombinant inbred line (RIL), GHB14 (M14), with similar maturity and an F6:7 population was developed through single seed descent method. F7 and F8 RILs were tested along with the parents at different locations. The F6 individual plants and both parents were genotyped using the 90 K single nucleotide polymorphism (SNP) wheat array. Stem rust resistance QTL on the long arms of chromosomes 1B (QSrGH.cs-1BL) and 2A (QSrGH.cs-2AL) were detected. QSrGH.cs-1BL and QSrGH.cs-2AL were both contributed by GH and explained 22% and 18% adult plant stem rust response variation, respectively, among GH/M14 RIL population. RILs carrying combinations of these QTL reduced more than 14% stem rust severity compared to those that possessed QSrGH.cs-1BL and QSrGH.cs-2AL individually. QSrGH.cs1BL was demonstrated to be the same as Sr58/Lr46/Yr29/Pm39 through marker genotyping. Lines lacking QSrGH.cs-1BL were used to Mendelise QSrGH.cs-2AL. Based on genomic locations of previously catalogued stem rust resistance genes and the QSrGH.cs-2AL map, it appeared to represent a new APR locus and was permanently named Sr63. SNP markers associated with Sr63 were converted to kompetetive allele-specific PCR (KASP) assays and were validated on a set of durum cultivars.


Asunto(s)
Basidiomycota , Triticum , Australia , Basidiomycota/fisiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Tallos de la Planta/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/genética
11.
Plant Dis ; 106(2): 439-450, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34353123

RESUMEN

Adult plant resistance (APR) to wheat stem rust has been one of the approaches for resistance breeding since the evolution of the Ug99 race group and other races. This study was conducted to dissect and understand the genetic basis of APR to stem rust in spring wheat line 'Copio'. A total of 176 recombinant inbred lines (RILs) from the cross of susceptible parent 'Apav' with Copio were phenotyped for stem rust resistance in six environments. Composite interval mapping using 762 genotyping-by-sequencing markers identified 16 genomic regions conferring stem rust resistance. Assays with gene-linked molecular markers revealed that Copio carried known APR genes Sr2 and Lr46/Yr29/Sr58 in addition to the 2NS/2AS translocation that harbors race-specific genes Sr38, Lr37, and Yr17. Three quantitative trait loci (QTLs) were mapped on chromosomes 2B, two QTLs on chromosomes 3A, 3B, and 6A each, and one QTL on each of chromosomes 2A, 1B, 2D, 4B, 5D, 6D, and 7A. The QTL QSr.umn.5D is potentially a new resistance gene and contributed to quantitative resistance in Copio. The RILs with allelic combinations of Sr2, Sr38, and Sr58 had 27 to 39% less stem rust coefficient of infection in all field environments compared with RILs with none of these genes, and this gene combination was most effective in the U.S. environments. We conclude that Copio carries several genes that provide both race-specific and non-race-specific resistance to diverse races of stem rust fungus and can be used by breeding programs in pyramiding other effective genes to develop durable resistance in wheat.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genómica , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
12.
Plants (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616178

RESUMEN

A collection of 482 tetraploid wheat accessions from the CIMMYT Germplasm Bank was screened in the greenhouse for resistance to leaf rust disease caused by the fungus Puccinia triticina E. The accessions were screened against two races CBG/BP and BBG/BP in the field at two locations: against race CBG/BP at the Norman E. Borlaug Experimental Station (CENEB) located in the Yaqui Valley in the northern state of Sonora in Mexico during the 2014-2015 growing season; and against race BBG/BP at CIMMYT headquarters in El Batan, Texcoco, in the state of Mexico in the summer of 2015. Among the accessions, 79 durum genotypes were identified, of which 68 continued demonstrating their resistance in the field (past the seedling stage) against the two leaf rust races. An additional set of 41 genotypes was susceptible at the seedling stage, but adult plant race-specific resistance was identified in the field. The 79 seedling-resistant genotypes were tested against 15 different leaf rust races at the seedling stage to measure the usefulness of their resistance in a breeding program. Among the 79 accessions tested, 35 were resistant to all races used in the tests. Two sample sources, CIMMYT (18/35) pre-breeding germplasm and Ethiopian landraces (17/35), showed seedling resistance to all races tested except for seven landraces from Ethiopia, which became susceptible to the Cirno race identified in 2017.

13.
Genes (Basel) ; 12(11)2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34828414

RESUMEN

Farmers in northwestern and central India have been exploring to sow their wheat much earlier (October) than normal (November) to sustain productivity by escaping terminal heat stress and to utilize the available soil moisture after the harvesting of rice crop. However, current popular varieties are poorly adapted to early sowing due to the exposure of juvenile plants to the warmer temperatures in the month of October and early November. Therefore, a study was undertaken to identify wheat genotypes suited to October sowing under warmer temperatures in India. A diverse collection of 3322 bread wheat varieties and elite lines was prepared in CIMMYT, Mexico, and planted in the 3rd week of October during the crop season 2012-2013 in six locations (Ludhiana, Karnal, New Delhi, Indore, Pune and Dharwad) spread over northwestern plains zone (NWPZ) and central and Peninsular zone (CZ and PZ; designated as CPZ) of India. Agronomic traits data from the seedling stage to maturity were recorded. Results indicated substantial diversity for yield and yield-associated traits, with some lines showing indications of higher yields under October sowing. Based on agronomic performance and disease resistance, the top 48 lines (and two local checks) were identified and planted in the next crop season (2013-2014) in a replicated trial in all six locations under October sowing (third week). High yielding lines that could tolerate higher temperature in October sowing were identified for both zones; however, performance for grain yield was more promising in the NWPZ. Hence, a new trial of 30 lines was planted only in NWPZ under October sowing. Lines showing significantly superior yield over the best check and the most popular cultivars in the zone were identified. The study suggested that agronomically superior wheat varieties with early heat tolerance can be obtained that can provide yield up to 8 t/ha by planting in the third to fourth week of October.


Asunto(s)
Producción de Cultivos/métodos , Termotolerancia , Triticum/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Genotipo , India , Carácter Cuantitativo Heredable , Estaciones del Año , Triticum/genética , Triticum/fisiología
14.
Front Plant Sci ; 12: 638520, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108977

RESUMEN

In this study, we defined the target population of environments (TPE) for wheat breeding in India, the largest wheat producer in South Asia, and estimated the correlated response to the selection and prediction ability of five selection environments (SEs) in Mexico. We also estimated grain yield (GY) gains in each TPE. Our analysis used meteorological, soil, and GY data from the international Elite Spring Wheat Yield Trials (ESWYT) distributed by the International Maize and Wheat Improvement Center (CIMMYT) from 2001 to 2016. We identified three TPEs: TPE 1, the optimally irrigated Northwestern Plain Zone; TPE 2, the optimally irrigated, heat-stressed North Eastern Plains Zone; and TPE 3, the drought-stressed Central-Peninsular Zone. The correlated response to selection ranged from 0.4 to 0.9 within each TPE. The highest prediction accuracies for GY per TPE were derived using models that included genotype-by-environment interaction and/or meteorological information and their interaction with the lines. The highest prediction accuracies for TPEs 1, 2, and 3 were 0.37, 0.46, and 0.51, respectively, and the respective GY gains were 118, 46, and 123 kg/ha/year. These results can help fine-tune the breeding of elite wheat germplasm with stable yields to reduce farmers' risk from year-to-year environmental variation in India's wheat lands, which cover 30 million ha, account for 100 million tons of grain or more each year, and provide food and livelihoods for hundreds of millions of farmers and consumers in South Asia.

15.
Sci Rep ; 11(1): 5254, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664297

RESUMEN

Wheat grain yield (GY) improvement using genomic tools is important for achieving yield breakthroughs. To dissect the genetic architecture of wheat GY potential and stress-resilience, we have designed this large-scale genome-wide association study using 100 datasets, comprising 105,000 GY observations from 55,568 wheat lines evaluated between 2003 and 2019 by the International Maize and Wheat Improvement Center and national partners. We report 801 GY-associated genotyping-by-sequencing markers significant in more than one dataset and the highest number of them were on chromosomes 2A, 6B, 6A, 5B, 1B and 7B. We then used the linkage disequilibrium (LD) between the consistently significant markers to designate 214 GY-associated LD-blocks and observed that 84.5% of the 58 GY-associated LD-blocks in severe-drought, 100% of the 48 GY-associated LD-blocks in early-heat and 85.9% of the 71 GY-associated LD-blocks in late-heat, overlapped with the GY-associated LD-blocks in the irrigated-bed planting environment, substantiating that simultaneous improvement for GY potential and stress-resilience is feasible. Furthermore, we generated the GY-associated marker profiles and analyzed the GY favorable allele frequencies for a large panel of 73,142 wheat lines, resulting in 44.5 million datapoints. Overall, the extensive resources presented in this study provide great opportunities to accelerate breeding for high-yielding and stress-resilient wheat varieties.


Asunto(s)
Grano Comestible/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Triticum/genética , Alelos , Pan , Mapeo Cromosómico , Sequías , Ligamiento Genético/genética , Genotipo , Desequilibrio de Ligamiento/genética , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
16.
Plant Dis ; 105(11): 3705-3714, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33779256

RESUMEN

The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety 'Apav#1' and resistant variety 'Neimai 836' was used to develop a mapping population containing 148 F5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.


Asunto(s)
Basidiomycota , Triticum , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética
17.
Front Genet ; 11: 589490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335539

RESUMEN

We untangled key regions of the genetic architecture of grain yield (GY) in CIMMYT spring bread wheat by conducting a haplotype-based, genome-wide association study (GWAS), together with an investigation of epistatic interactions using seven large sets of elite yield trials (EYTs) consisting of a total of 6,461 advanced breeding lines. These lines were phenotyped under irrigated and stress environments in seven growing seasons (2011-2018) and genotyped with genotyping-by-sequencing markers. Genome-wide 519 haplotype blocks were constructed, using a linkage disequilibrium-based approach covering 14,036 Mb in the wheat genome. Haplotype-based GWAS identified 7, 4, 10, and 15 stable (significant in three or more EYTs) associations in irrigated (I), mild drought (MD), severe drought (SD), and heat stress (HS) testing environments, respectively. Considering all EYTs and the four testing environments together, 30 stable associations were deciphered with seven hotspots identified on chromosomes 1A, 1B, 2B, 4A, 5B, 6B, and 7B, where multiple haplotype blocks were associated with GY. Epistatic interactions contributed significantly to the genetic architecture of GY, explaining variation of 3.5-21.1%, 3.7-14.7%, 3.5-20.6%, and 4.4- 23.1% in I, MD, SD, and HS environments, respectively. Our results revealed the intricate genetic architecture of GY, controlled by both main and epistatic effects. The importance of these results for practical applications in the CIMMYT breeding program is discussed.

18.
Front Plant Sci ; 11: 564183, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042185

RESUMEN

Genomic breeding technologies offer new opportunities for grain yield (GY) improvement in common wheat. In this study, we have evaluated the potential of genomic selection (GS) in breeding for GY in wheat by modeling a large dataset of 48,562 GY observations from the International Maize and Wheat Improvement Center (CIMMYT), including 36 yield trials evaluated between 2012 and 2019 in Obregón, Sonora, Mexico. Our key objective was to determine the value that GS can add to the current three-stage yield testing strategy at CIMMYT, and we draw inferences from predictive modeling of GY using 420 different populations, environments, cycles, and model combinations. First, we evaluated the potential of genomic predictions for minimizing the number of replications and lines tested within a site and year and obtained mean prediction accuracies (PAs) of 0.56, 0.5, and 0.42 in Stages 1, 2, and 3 of yield testing, respectively. However, these PAs were similar to the mean pedigree-based PAs indicating that genomic relationships added no value to pedigree relationships in the yield testing stages, characterized by small family-sizes. Second, we evaluated genomic predictions for minimizing GY testing across stages/years in Obregón and observed mean PAs of 0.41, 0.31, and 0.37, respectively when GY in the full irrigation bed planting (FI BP), drought stress (DS), and late-sown heat stress environments were predicted across years using genotype × environment (G × E) interaction models. Third, we evaluated genomic predictions for minimizing the number of yield testing environments and observed that in Stage 2, the FI BP, full irrigation flat planting and early-sown heat stress environments (mean PA of 0.37 ± 0.12) and the reduced irrigation and DS environments (mean PA of 0.45 ± 0.07) had moderate predictabilities among them. However, in both predictions across years and environments, the PAs were inconsistent across years and the G × E models had no advantage over the baseline model with environment and line effects. Overall, our results provide excellent insights into the predictability of a quantitative trait like GY and will have important implications on the future design of GS for GY in wheat breeding programs globally.

19.
Front Plant Sci ; 11: 580136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973861

RESUMEN

Breeding for grain yield (GY) in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at Obregon, Mexico in different selection environments (SEs). To understand the efficiency of selection in the SEs, we performed a large retrospective quantitative genetics study using CIMMYT's yield trials evaluated in the SEs (2013-2014 to 2017-2018), the South Asia Bread Wheat Genomic Prediction Yield Trials (SABWGPYTs) evaluated in India, Pakistan, and Bangladesh (2014-2015 to 2017-2018), and the Elite Spring Wheat Yield Trials (ESWYTs) evaluated in several sites globally (2003-2004 to 2016-2017). First, we compared the narrow-sense heritabilities in the Obregon SEs and target sites and observed that the mean heritability in the SEs was 44.2 and 92.3% higher than the mean heritabilities in the SABWGPYT and ESWYT sites, respectively. Second, we observed significant genetic correlations between a SE in Obregon and all the five SABWGPYT sites and 65.1% of the ESWYT sites. Third, we observed high ratios of response to indirect selection in the SEs of Obregon with a mean of 0.80 ± 0.21 and 2.6 ± 5.4 in the SABWGPYT and ESWYT sites, respectively. Furthermore, our results also indicated that for all the SABWGPYT sites and 82% of the ESWYT sites, a response greater than 0.5 can be achieved by indirect selection for GY in Obregon. We also performed genomic prediction for GY in the target sites using the performance of the same lines in the SEs of Obregon and observed moderate mean prediction accuracies of 0.24 ± 0.08 and 0.28 ± 0.08 in the SABWGPYT and ESWYT sites, respectively using the genotype x environment (GxE) model. However, we observed similar accuracies using the baseline model with environment and line effects and no advantage of modeling GxE interactions. Overall, this study provides important insights into the suitability of the Obregon SEs in breeding for GY, while the variable genomic predictabilities of GY and the high year-to-year GY fluctuations reported, highlight the importance of multi-environment testing across time and space to stave off GxE induced uncertainties in varietal yields.

20.
Front Plant Sci ; 11: 824, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760411

RESUMEN

Rust diseases continuously threaten global wheat production: stem rust, leaf rust, and yellow rust caused by Puccinia graminis f. sp. tritici, Puccinia triticina, and Puccinia striiformis f. sp. tritici, respectively. Recent studies indicated that the average losses from all these three rusts reached up to 15.04 million tons per year, which is equivalent to an annual average loss of around US $2.9 billion per year. The major focus of Mexican and worldwide breeding programs is the release of rust resistant cultivars, as this is considered the best option for controlling rust diseases. In Mexico, the emphasis has been placed on genes that confer partial resistance in the adult plant stage and against a broad spectrum of rust races since the 1970s. In this study, a set of the first-generation tall varieties developed and released in the 1940s and 1950s, the first semi-dwarfs, and other releases in Mexico, all of which showed different levels of rust resistance have been phenotyped for the three rust diseases and genotyped. Results of the molecular marker detection indicated that Lr34, Lr46, Lr67, and Lr68 alone or in different gene combinations were present among the wheat cultivars. Flag leaf tip necrosis was present in all cultivars and most were positive for brown necrosis or Pseudo Black Chaff associated with the Sr2 stem rust resistance complex. The phenotypic responses to the different rust infections indicate the presence of additional slow rusting and race-specific resistance genes. The study reveals the association of the slow rusting genes with durable resistance to the three rusts including Ug99 in cultivars bred before the green revolution such as Frontera, Supremo 211, Chapingo 48, Yaqui 50, Kentana 52, Bajio 52, Bajio 53, Yaqui 53, Chapingo 53, Yaktana Tardio 54, and Mayo 54 and their descendants after intercrossing and recombination. These slow rusting genes are the backbone of the resistance in the current Mexican germplasm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...