Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19057, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154070

RESUMEN

The present work deals with developing a method for revalorizing steel residues to create sunlight-active photocatalysts based on iron oxides. Commercial-grade steel leftovers are oxidized under different combinations of pH and temperature (50-90 °C and 3 ≥ pH ≤ 5) in a low energy-intensive setup. The material with the highest production efficiency (yield > 12%) and magnetic susceptibility (χm = 387 × 10-6 m3/kg) was further explored and modified by diffusion of M2+ (Zn and Co) ions within the structure of the oxide using a hydrothermal method to create ZnFe2O4, CoFe2O4 and combined Co-Zn ferrite. (Co-Zn)Fe2O4 displayed a bandgap of 2.02 eV and can be activated under sunlight irradiation. Electron microscopy studies show that (Co-Zn)Fe2O4 consists of particles with diameters between 400 and 700 nm, homogeneous size, even distribution, and good dispersibility. Application of the developed materials in the sunlight catalysis of black liquors from cellulose extraction resulted in a reduction of the Chemical Oxygen Demand (- 15% on average) and an enhancement in biodegradability (> 0.57 BOD/COD) after 180 min of reaction. Since the presented process employs direct solar light, it opens the possibility to large-scale water treatment and chemical upgrading applications.

3.
ACS Omega ; 8(8): 7459-7469, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36873030

RESUMEN

The present work demonstrates a simple and sustainable method for forming azo oligomers from low-value compounds such as nitroaniline. The reductive oligomerization of 4-nitroaniline was achieved via azo bonding using nanometric Fe3O4 spheres doped with metallic nanoparticles (Cu NPs, Ag NPs, and Au NPs), which were characterized by different analytical methods. The magnetic saturation (M s) of the samples showed that they are magnetically recoverable from aqueous environments. The effective reduction of nitroaniline followed pseudo-first-order kinetics, reaching a maximum conversion of about 97%. Fe3O4-Au is the best catalyst, its a reaction rate (k Fe3O4-Au = 0.416 mM L-1 min-1) is about 20 times higher than that of bare Fe3O4 (k Fe3O4 = 0.018 mM L-1 min-1). The formation of the two main products was determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS), evidencing the effective oligomerization of NA through N = N azo linkage. It is consistent with the total carbon balance and the structural analysis by density functional theory (DFT)-based total energy. The first product, a six-unit azo oligomer, was formed at the beginning of the reaction through a shorter, two-unit molecule. The nitroaniline reduction is controllable and thermodynamically viable, as shown in the computational studies.

4.
Dalton Trans ; 51(46): 17671-17687, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36342366

RESUMEN

Since the interfacial binding strength and structural integrity have a strong influence on the active sites of nanocomposites, this study focused on exploring the structural and electronic properties at the interface between the implanted metal ion and host support. For this, nanocomposites of gold embedded in CeO2-ZrO2 and CeO2-Al2O3 matrices were fabricated, and their structural and morphological properties were investigated using ICP-OES, UV-vis, XRD, Raman, HRTEM, and high-resolution XPS studies and compared. From the results, it was found that the deposition of gold is highly favored over CeO2-ZrO2 (3.99 atomic %) than CeO2-Al2O3 (1.21 atomic %); however, the same amount of gold was used for the synthesis of both nanocomposites, as befits it. The HRTEM images of Au/CeO2-ZrO2 displayed well-organized yarn textured particles with less than 5 nm size, which lacks in Au/CeO2-Al2O3. The reason for this less systematized and less Au embedding in the presence of alumina in CeO2-Al2O3 was verified with the high-resolution XPS studies of both nanocomposites and an elevated binding energy due to the mobility of Au particles over CeO2-Al2O3 was observed, while for Au/CeO2-ZrO2, a very small binding energy shift of gold states (Au 4f5/2 0.39; Au 4f7/2 0.17 eV) and the CeO2-ZrO2 matrix that favored an increased intermolecular force between gold and the supporting host was observed. This agrees well with UV-vis electronic spectrum analysis, which revealed that the incorporation of gold nanoparticles narrowed the band gap more significantly in Au/CeO2-ZrO2 (4.2 eV) than Au/CeO2-Al2O3 (4.94 eV) suggesting the elevated electron transfer from the conduction band of CeO2-ZrO2 to Au interfaces. In addition, XRD and Raman studies of Au/CeO2-ZrO2 showed a pronounced phase transformation of Ce4+ to Ce3+ in the presence of homovalent Zr4+ ions with an increased structural disorder in CeO2 promoting the localized surface plasmon resonance (LSPR) in the lattice of CeO2-ZrO2, which was less detected in Au/CeO2-Al2O3 due to the interference of less-desired γ-Al2O3 phases. These characteristics of Au/CeO2-ZrO2 ensured its performance as a promised photocatalyst for thioanisole degradation without using any harmful oxidants, and its stability towards different irradiation conditions, such as visible, ultraviolet, and solar light.

5.
Photochem Photobiol Sci ; 18(7): 1761-1772, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31111854

RESUMEN

Biomolecules like cysteine and cytosine play a significant role in many physiological processes, and their unusual level in biological systems can lead to many diseases including cancer. Indeed, the need for selective detection of these moieties by a fluorescence probe is imperative. Thus, thiophene based Schiff N,N'-bis(thiophene-2-ylmethylene)thiophenemethane (BMTM) was synthesized and then characterized using several analytical techniques before converting it into organic nanoparticles (ONPs). Then, fluorescent organic inorganic nanohybrids (FONs) were obtained after decorating ONPs with AuNPs to yield BMTM-Au-ONPs (FONPs). The morphology of the particles, analyzed using a Transmission Electron Microscope (TEM), shows that AuNPs were embedded with low density organic matter (ONPs). FONPs were employed to recognize cysteine and cytosine simultaneously. No interference was observed from other moieties such as guanine, uracyl, NADH, NAD, ATP, and adenine during the detection. It means that the intensity of the fluorescence signal was significantly changed (enhanced for cytosine and quenched for cysteine). So, FONPs were used to detect cysteine and cytosine in real samples, like Saccharomyces cerevisiae cells. As expected, no considerable fluorescence signal for cysteine was observed, while for cytosine, strong fluorescence signals were detected in the cells. DFT was used to explain the interaction of FONPs with cysteine or cytosine.


Asunto(s)
Cisteína/análisis , Citosina/análisis , Oro/química , Nanopartículas del Metal/química , Tiofenos/química , Cisteína/metabolismo , Citosina/metabolismo , Teoría Funcional de la Densidad , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Microscopía Confocal , Microscopía Electrónica de Transmisión , NAD/química , Saccharomyces cerevisiae/metabolismo
6.
Chemosphere ; 213: 481-497, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30245225

RESUMEN

In this paper, we report the combination of two metal oxides (TiO2ZnO) that allows mixed density of states to reduce band gap energy, facilitating the photo-oxidation of Congo red dye under visible light. For the oxidation, a possible mechanism is proposed after analyzing the intermediates by GC-MS, and it is consistent with Density Functional Theory (DFT). The nanohybrids were characterized comprehensibly by several analytical techniques such as X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). For the addition of ZnO to TiO2, a dominance of anatase phase was found rather than other phases (rutile or brookite). A broad band (∼550 nm) is observed in UV-Visible spectra for TiO2ZnO/Ag NPs nm because of Surface Plasmon properties of Ag NPs. The band gap energy was calculated for TiO2ZnO/Ag system, and then it has been further studied by DFT in order to show why the convergence of two semiconductors allows a mixed density of states, facilitating the reduction of the energy gap between occupied and unoccupied bands; ultimately, it improves the performance of catalysts under visible light. Significantly, the interaction of crystal planes (0 0 I) of TiO2 anatase and (0 0 1) of ZnO crucially plays as an important role for the reduction of energy band-gap. Additionally, TiO2ZnOAg NPs were used recognize Saccharomyces cerevisiae cells by con-focal fluorescence microscope, showing that it develops bright bio-images for the cells; while for TiO2 or ZnO or TiO2ZnO NPs, no fluorescent response was seen within the cells.


Asunto(s)
Rojo Congo/química , Luz , Fotólisis , Titanio/química , Catálisis , Rojo Congo/efectos de la radiación , Microscopía , Nanopartículas/química , Semiconductores , Análisis Espectral , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA