Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 22(7): 860-866, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37142739

RESUMEN

Thin layers of in-plane anisotropic materials can support ultraconfined polaritons, whose wavelengths depend on the propagation direction. Such polaritons hold potential for the exploration of fundamental material properties and the development of novel nanophotonic devices. However, the real-space observation of ultraconfined in-plane anisotropic plasmon polaritons (PPs)-which exist in much broader spectral ranges than phonon polaritons-has been elusive. Here we apply terahertz nanoscopy to image in-plane anisotropic low-energy PPs in monoclinic Ag2Te platelets. The hybridization of the PPs with their mirror image-by placing the platelets above a Au layer-increases the direction-dependent relative polariton propagation length and the directional polariton confinement. This allows for verifying a linear dispersion and elliptical isofrequency contour in momentum space, revealing in-plane anisotropic acoustic terahertz PPs. Our work shows high-symmetry (elliptical) polaritons on low-symmetry (monoclinic) crystals and demonstrates the use of terahertz PPs for local measurements of anisotropic charge carrier masses and damping.


Asunto(s)
Acústica , Plaquetas , Anisotropía , Peso Molecular
2.
Nano Lett ; 21(17): 7109-7115, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34414765

RESUMEN

Phonon polaritons (PhPs) in van der Waals (vdW) crystal slabs enable nanoscale infrared light manipulation. Specifically, periodically structured vdW slabs behave as polaritonic crystals (vdW-PCs), where the polaritons form Bloch modes. Because the polariton wavelengths are smaller than that of light, conventional far-field spectroscopy does not allow for a complete characterization of vdW-PCs or for revealing their band structure. Here, we perform hyperspectral infrared nanoimaging and analysis of PhPs in a vdW-PC slab made of h-BN. We demonstrate that infrared spectra recorded at individual spatial positions within the unit cell of the vdW-PC can be associated with its band structure and local density of photonic states (LDOS). We thus introduce hyperspectral infrared nanoimaging as a tool for the comprehensive analysis of polaritonic crystals, which could find applications in the reconstruction of complex polaritonic dispersion surfaces in momentum-frequency space or for exploring exotic electromagnetic modes in topological photonic structures.

3.
Nat Commun ; 10(1): 3242, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324759

RESUMEN

Launching and manipulation of polaritons in van der Waals materials offers novel opportunities for field-enhanced molecular spectroscopy and photodetection, among other applications. Particularly, the highly confined hyperbolic phonon polaritons (HPhPs) in h-BN slabs attract growing interest for their capability of guiding light at the nanoscale. An efficient coupling between free space photons and HPhPs is, however, hampered by their large momentum mismatch. Here, we show -by far-field infrared spectroscopy, infrared nanoimaging and numerical simulations- that resonant metallic antennas can efficiently launch HPhPs in thin h-BN slabs. Despite the strong hybridization of HPhPs in the h-BN slab and Fabry-Pérot plasmonic resonances in the metal antenna, the efficiency of launching propagating HPhPs in h-BN by resonant antennas exceeds significantly that of the non-resonant ones. Our results provide fundamental insights into the launching of HPhPs in thin polar slabs by resonant plasmonic antennas, which will be crucial for phonon-polariton based nanophotonic devices.

4.
Nat Commun ; 10(1): 2089, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064992

RESUMEN

Marcus's theory of electron transfer, initially formulated six decades ago for redox reactions in solution, is now of great importance for very diverse scientific communities. The molecular scale tunability of electronic properties renders organic semiconductor materials in principle an ideal platform to test this theory. However, the demonstration of charge transfer in different Marcus regions requires a precise control over the driving force acting on the charge carriers. Here, we make use of a three-terminal hot-electron molecular transistor, which lets us access unconventional transport regimes. Thanks to the control of the injection energy of hot carriers in the molecular thin film we induce an effective negative differential resistance state that is a direct consequence of the Marcus Inverted Region.

5.
Nat Commun ; 10(1): 42, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604741

RESUMEN

Photonic crystals (PCs) are periodically patterned dielectrics providing opportunities to shape and slow down the light for processing of optical signals, lasing and spontaneous emission control. Unit cells of conventional PCs are comparable to the wavelength of light and are not suitable for subwavelength scale applications. We engineer a nanoscale hole array in a van der Waals material (h-BN) supporting ultra-confined phonon polaritons (PhPs)-atomic lattice vibrations coupled to electromagnetic fields. Such a hole array represents a polaritonic crystal for mid-infrared frequencies having a unit cell volume of [Formula: see text] (with λ0 being the free-space wavelength), where PhPs form ultra-confined Bloch modes with a remarkably flat dispersion band. The latter leads to both angle- and polarization-independent sharp Bragg resonances, as verified by far-field spectroscopy and near-field optical microscopy. Our findings could lead to novel miniaturized angle- and polarization-independent infrared narrow-band couplers, absorbers and thermal emitters based on van der Waals materials and other thin polar materials.

6.
Nat Commun ; 8: 15624, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28589941

RESUMEN

Polaritons in layered materials-including van der Waals materials-exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry-Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon-polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon-polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials.

7.
Nano Lett ; 17(1): 228-235, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27966994

RESUMEN

Hyperbolic polaritons in van der Waals (vdW) materials recently attract a lot of attention, owing to their strong electromagnetic field confinement, ultraslow group velocities, and long lifetimes. Typically, volume-confined hyperbolic polaritons (HPs) are studied. Here we show the first near-field optical images of hyperbolic surface polaritons (HSPs), which are confined and guided at the edges of thin flakes of a vdW material. To that end, we applied scattering-type scanning near-field optical microscopy (s-SNOM) for launching and real-space nanoimaging of hyperbolic surface phonon polariton modes on a hexagonal boron nitride (h-BN) flake. Our imaging data reveal that the fundamental HSP mode exhibits a stronger field confinement (shorter wavelength), smaller group velocities, and nearly identical lifetimes, as compared to the fundamental HP mode of the same h-BN flake. Our experimental data, corroborated by theory, establish a solid basis for future studies and applications of HPs and HSPs in vdW materials.

8.
Nat Commun ; 7: 13751, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941810

RESUMEN

Molecular spins have become key enablers for exploring magnetic interactions, quantum information processes and many-body effects in metals. Metal-organic molecules, in particular, let the spin state of the core metal ion to be modified according to its organic environment, allowing localized magnetic moments to emerge as functional entities with radically different properties from its simple atomic counterparts. Here, using and preserving the integrity of transition metal phthalocyanine high-spin complexes, we demonstrate the magnetic doping of gold thin films, effectively creating a new ground state. We demonstrate it by electrical transport measurements that are sensitive to the scattering of itinerant electrons with magnetic impurities, such as Kondo effect and weak antilocalization. Our work expands in a simple and powerful way the classes of materials that can be used as magnetic dopants, opening a new channel to couple the wide range of molecular properties with spin phenomena at a functional scale.

9.
Nat Commun ; 5: 4161, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24946715

RESUMEN

The energetics of metal/molecular semiconductor interfaces plays a fundamental role in organic electronics, determining the performance of very diverse devices. So far, information about the energy level alignment has been most commonly gained by spectroscopy techniques that typically require experimental conditions far from the real device operation. Here we demonstrate that a simple three-terminal device allows the acquisition of spectroscopic information about the metal/molecule energy alignment in real operative condition. As a proof of principle, we employ the proposed device to measure the energy barrier height between different clean metals and C60 molecules and we recover typical results from photoemission spectroscopy. The device is designed to inject a hot electron current directly into the molecular level devoted to charge transport, disentangling the contributions of both the interface and the bulk to the device total resistance, with important implications for spintronics and low-temperature physics.

10.
Science ; 344(6190): 1369-73, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24855026

RESUMEN

Graphene plasmons promise unique possibilities for controlling light in nanoscale devices and for merging optics with electronics. We developed a versatile platform technology based on resonant optical antennas and conductivity patterns for launching and control of propagating graphene plasmons, an essential step for the development of graphene plasmonic circuits. We launched and focused infrared graphene plasmons with geometrically tailored antennas and observed how they refracted when passing through a two-dimensional conductivity pattern, here a prism-shaped bilayer. To that end, we directly mapped the graphene plasmon wavefronts by means of an imaging method that will be useful in testing future design concepts for nanoscale graphene plasmonic circuits and devices.

11.
Phys Rev Lett ; 110(20): 203902, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167410

RESUMEN

Theory predicts a distinct spectral shift between the near- and far-field optical response of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy.

12.
Nat Mater ; 12(1): 52-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23104152

RESUMEN

Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy-efficient refrigeration, but only a few materials that suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La(0.7)Ca(0.3)MnO(3) using strain-mediated feedback from BaTiO(3) substrates near a first-order structural phase transition. Our findings should inspire the discovery of giant magnetocaloric effects in a wide range of magnetic materials, and the parallel development of nanostructured bulk samples for practical applications.

13.
Nat Commun ; 3: 684, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22353715

RESUMEN

Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering.

14.
Phys Rev Lett ; 99(24): 247207, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18233482

RESUMEN

We use polarized neutron reflectometry and dc magnetometry to obtain a comprehensive picture of the magnetic structure of a series of La(2/3)Sr(1/3)MnO3/Pr(2/3)Ca(1/3)MnO3 (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...