Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Qual Life Res ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907832

RESUMEN

OBJECTIVE: Thyroid cancers are on the rise, but the associated vital prognosis and long-term survival rates are very good. Therefore, treated patients' quality of life and psychological well-being are important considerations. The treatment usually involves surgery and radioactive iodine (radioiodine) ablation. This study aims to investigate potential effects of radioiodine ablation therapy on health-related quality of life, anxiety and depression symptoms, and nutritional status at 6 months post-therapy. METHODS: This study included 136 patients diagnosed with thyroid cancer. Absorbed doses to the salivary glands were estimated from dosimeters worn by patients. Patient health-related quality of life, psychological status and nutritional status were assessed before and 6 months after therapy using standardized questionnaires (including SF-36, Hospital Anxiety and Depression (HAD) scale). Statistical analyses included random-effects logistic and linear regressions adjusted for potential confounders. RESULTS: While no significant association was found between radioiodine exposure and anxiety or depression symptoms, or nutritional status, a significant increase in the SF-36 role physical sub- score was observed in relation with the salivary gland dose (ß= 6.54, 95%CI 2.71;10.36 for a 1-Gy increase). CONCLUSIONS: The findings suggest an improved physical health-related quality of life, namely reduced pain and functional impairment, 6 months after radioiodine therapy in thyroid cancer patients. No significant association was found between radioiodine exposure and mental health-related quality of life, anxiety or depression scores nor nutritional status. This study does not provide any evidence that radioiodine therapy has a potentially adverse effect on patient health-related quality of life.

2.
EJNMMI Phys ; 11(1): 38, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647987

RESUMEN

BACKGROUND: In order to ensure adequate radiation protection of critical groups such as staff, caregivers and the general public coming into proximity of nuclear medicine (NM) patients, it is necessary to consider the impact of the radiation emitted by the patients during their stay at the hospital or after leaving the hospital. Current risk assessments are based on ambient dose rate measurements in a single position at a specified distance from the patient and carried out at several time points after administration of the radiopharmaceutical to estimate the whole-body retention. The limitations of such an approach are addressed in this study by developing and validating a more advanced computational dosimetry approach using Monte Carlo (MC) simulations in combination with flexible and realistic computational phantoms and time activity distribution curves from reference biokinetic models. RESULTS: Measurements of the ambient dose rate equivalent H*(10) at 1 m from the NM patient have been successfully compared against MC simulations with 5 different codes using the ICRP adult reference computational voxel phantoms, for typical clinical procedures with 99mTc-HDP/MDP, 18FDG and Na131I. All measurement data fall in the 95% confidence intervals, determined for the average simulated results. Moreover, the different MC codes (MCNP-X, PHITS, GATE, GEANT4, TRIPOLI-4®) have been compared for a more realistic scenario where the effective dose rate E of an exposed individual was determined in positions facing and aside the patient model at 30 cm, 50 cm and 100 cm. The variation between codes was lower than 8% for all the radiopharmaceuticals at 1 m, and varied from 5 to 16% for the face-to face and side-by-side configuration at 30 cm and 50 cm. A sensitivity study on the influence of patient model morphology demonstrated that the relative standard deviation of H*(10) at 1 m for the range of included patient models remained under 16% for time points up to 120 min post administration. CONCLUSIONS: The validated computational approach will be further used for the evaluation of effective dose rates per unit administered activity for a variety of close-contact configurations and a range of radiopharmaceuticals as part of risk assessment studies. Together with the choice of appropriate dose constraints this would facilitate the setting of release criteria and patient restrictions.

3.
Radiat Oncol ; 19(1): 40, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509543

RESUMEN

PURPOSE: To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. MATERIAL AND METHODS: Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. MAIN RESULTS: The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm2 field size, the mean deviation to the TPS of the uncorrected OF was - 1.7 ± 1.6% against - 4.0 ± 0.6% for the corrected OF whereas we found - 4.8 ± 0.8% for passive dosimeters. The mean absolute dose deviations to the TPS in different phantoms were 0 ± 0.4%, - 1.2 ± 0.6% and 0.5 ± 1.1% for the PTW 31010, PTW 31021 and Exradin A28 MR respectively. CONCLUSIONS: The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.


Asunto(s)
Aceleradores de Partículas , Radiometría , Humanos , Radiometría/métodos , Método de Montecarlo , Fantasmas de Imagen , Calibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA