Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 7(1): 302, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917890

RESUMEN

We introduce the Precipitation Probability DISTribution (PPDIST) dataset, a collection of global high-resolution (0.1°) observation-based climatologies (1979-2018) of the occurrence and peak intensity of precipitation (P) at daily and 3-hourly time-scales. The climatologies were produced using neural networks trained with daily P observations from 93,138 gauges and hourly P observations (resampled to 3-hourly) from 11,881 gauges worldwide. Mean validation coefficient of determination (R2) values ranged from 0.76 to 0.80 for the daily P occurrence indices, and from 0.44 to 0.84 for the daily peak P intensity indices. The neural networks performed significantly better than current state-of-the-art reanalysis (ERA5) and satellite (IMERG) products for all P indices. Using a 0.1 mm 3 h-1 threshold, P was estimated to occur 12.2%, 7.4%, and 14.3% of the time, on average, over the global, land, and ocean domains, respectively. The highest P intensities were found over parts of Central America, India, and Southeast Asia, along the western equatorial coast of Africa, and in the intertropical convergence zone. The PPDIST dataset is available via www.gloh2o.org/ppdist .

2.
Sci Data ; 7(1): 74, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127530

RESUMEN

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) product provided over 17 years of gridded precipitation datasets. However, the accuracy and spatial resolution of TMPA limits the applicability in hydrometeorological applications. We present a dataset that enhances the accuracy and spatial resolution of the TMPA monthly product (3B43). We resample the TMPA data to a 1 km grid and apply a correction function derived from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) to reduce bias in the data. We confirm a linear relationship between bias and elevation above 1,500 meters where TMPA underestimates measured precipitation, providing a proof-of-concept of how simple linear scaling can be used to augment existing satellite datasets. The result of the correction is the High-Resolution Altitude-Corrected Precipitation product (HRAC-Precip) for the CONUS. Using 9,200 precipitation stations from the Global Historical Climatology Network (GHCN), we compare the accuracy of TMPA 3B43 versus the new HRAC-Precip product. The results show an improvement of the mean absolute error of 12.98% on average.

3.
Remote Sens Earth Syst Sci ; 2(1): 18-38, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33005873

RESUMEN

Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries.

4.
J Appl Meteorol Climatol ; 57(1): 15-30, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30174561

RESUMEN

This paper improves upon an existing extreme precipitation monitoring system based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach, where data from similar locations are pooled to increase the quality of the resulting model parameter estimates to compensate for the short data record. The regional analysis is divided into two stages. First, the region defined by the TRMM measurements is partitioned into approximately 28,000 non-overlapping clusters using a recursive k-means clustering scheme. Next, a statistical model is used to characterize the extreme precipitation events occurring in each cluster. Instead of applying the block-maxima approach used in the existing system, where the Generalized Extreme Value probability distribution is fit to the annual precipitation maxima at each site separately, the present work adopts the peak-over-threshold method of classifying points as extreme if they exceed a pre-specified threshold. Theoretical considerations motivate using the Point Process framework for modeling extremes. The fitted parameters are used to estimate trends and to construct simple and intuitive average recurrence interval (ARI) maps which reveal how rare a particular precipitation event is. This information could be used by policy makers for disaster monitoring and prevention. The new methodology eliminates much of the noise that was produced by the existing models due to a short data record, producing more reasonable ARI maps when compared with NOAA's long-term Climate Prediction Center ground-based observations. Furthermore, the proposed methodology can be applied to other extreme climate records.

5.
J Clim ; 31(21): 8689-8704, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32020987

RESUMEN

Ten years of terrestrial water storage anomalies from the Gravity Recovery and Climate Experiment (GRACE) were used to estimate high latitude snowfall accumulation using a mass balance approach. The estimates were used to assess two common gauge-undercatch correction factors (CFs): Legates climatology (CF-L) utilized in the Global Precipitation Climatology Project (GPCP), and Fuchs dynamic correction model (CF-F) used in the Global Precipitation Climatology Centre (GPCC) Monitoring product. The two CFs can be different by more than 50%. CF-L tended to exceed CF-F over northern Asia and Eurasia, while the opposite was observed over North America. Estimates of snowfall from GPCP, GPCC-L (GPCC corrected by CF-L), and GPCC-F (GPCC corrected by CF-F) were 62%, 64%, and 46% more than GPCC over northern Asia and Eurasia. GRACE-based estimate (49% more than GPCC) was the closest to GPCC-F. We found that as near surface air temperature decreases, the products increasingly underestimated the GRACE-based snowfall accumulation. Overall, GRACE showed that CFs are effective in improving GPCC estimates. Furthermore, our case studies and overall statistics suggest that CF-F is likely more effective than CF-L in most of the high latitude regions studied here. GPCP showed generally better skill than GPCC-L, which might be related to the use of satellite data or additional quality controls on gauge inputs to GPCP. This study suggests that GPCP can be improved if it employs CF-L instead of CF-F to correct for gauge undercatch. However, this implementation requires further studies, region-specific analysis, and operational considerations.

6.
Bull Am Meteorol Soc ; 98(1): 69-78, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30008481

RESUMEN

The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across the Earth's surface for hydro-meteorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth due to temporal sampling resolutions, periods of operation, data latency and data access. Numbers of gauges range from a few thousand available in near real time, to about a hundred thousand for all 'official' gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 m2 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, auto-correlation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC) -available gauge is independent and represents a surrounding area of 5 km radius, this represents only about 1% of the Earth's surface. The situation is further confounded for snowfall which has a greater measurement uncertainty.

8.
J Hydrometeorol ; 18(10): 2817-2825, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32661459

RESUMEN

Our understanding of hydroclimatic processes in Africa has been hindered by the lack of in-situ precipitation measurements. Satellite-based observations, in particular, the TRMM Multi-Satellite Precipitation Analysis (TMPA) have been pivotal to filling this void. The recently-released Integrated Multi-satellitE Retrievals for GPM (IMERG) project aims to continue the legacy of its predecessor, TMPA, and provide higher resolution data. Here, we validate IMERG-V04A precipitation data using in-situ observations from the Trans-African Hydro-Meteorological Observatory (TAHMO) project. Various evaluation measures are examined over a select number of stations in West and East Africa. In addition, continent-wide comparisons are made between IMERG and TMPA. The results show that the performance of the satellite-based products varies by season, region and the evaluation statistics. Precipitation diurnal cycle is relatively better captured by IMERG than TMPA. Both products exhibit a better agreement with gauge data in East Africa and humid West Africa than in the Southern Sahel. However, a clear advantage for IMERG is not apparent in detecting the annual cycle. Although all gridded products used here reasonably capture the annual cycle, some differences are evident during the short rains in East Africa. Direct comparison between IMERG and TMPA over the entire continent reveals that the similarity between the two products is also regionally heterogeneous. Except for Zimbabwe and Madagascar, where both satellite-based observations present a good agreement, the two products generally have their largest differences over mountainous regions. IMERG seems to have achieved a reduction in the positive bias evident in TMPA over Lake Victoria.

9.
J Geophys Res Atmos ; 121(9): 4468-4486, 2016 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-30027024

RESUMEN

An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally-based GPCP, GPCC and CMAP products and the ERA-Interim, MERRA and NCEP-DOE R2 reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55° latitude is considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment (GRACE). The intercomparison is performed for the 2007-2010 period when CloudSat was fully operational. It is found that ERA- Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over northern hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of precipitation products in high latitudes, quantifying the current uncertainties, improving the products, and establishing a benchmark for assessment of climate models.

10.
Mon Weather Rev ; 144(2): 663-679, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32817999

RESUMEN

There are many issues regarding the assimilation of satellite precipitation data into numerical models, including the non-Gaussian error distributions associated with precipitation, and large model and observation errors. As a result, it is not easy to improve the model forecast beyond a few hours by assimilating precipitation. To identify the challenges and propose practical solutions to assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP Global Forecasting System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The samples are constructed using the same model with the same forecast period, observation variables, and resolution as planned in the follow-on GFS/TMPA precipitation assimilation experiments presented in the companion paper. The statistical results indicate that the T62 and T126 GFS models generally have positive bias in precipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus precipitation is problematic in the T62 GFS model. It is necessary to apply to precipitation either the commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a better relationship between the model and observational precipitation. When the Gaussian transformations are separately applied to the model and observational precipitation, they serve as a bias correction that corrects the amplitude-dependent biases. In addition, using a spatially and/or temporally averaged precipitation variable, such as the 6-hour accumulated precipitation, should be advantageous for precipitation assimilation.

11.
J Clim ; 29(15): 5447-5468, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818008

RESUMEN

Climatology and variations of recent mean and intense precipitation over a near global (50°S-50°N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are the current Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Version 7 precipitation product, with high spatial and temporal resolution during 1998-2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile or a fixed threshold of daily precipitation value (e.g., 25 and 50 mm day-1). All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, both over tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation ≥25 mm day-1, defined as a ratio between the intense precipitation above used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Niño-Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...