Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(4): e0162223, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37439699

RESUMEN

Paraburkholderia sabiae LMG24235 is a nitrogen-fixing betaproteobacterium originally isolated from a root nodule of Mimosa caesalpiniifolia in Brazil. We show here that this strain effectively kills strains from several bacterial families (Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae) which include important plant pathogens in a contact-dependent manner. De novo assembly of the first complete genome of P. sabiae using long sequencing reads and subsequent annotation revealed two gene clusters predicted to encode type VI secretion systems (T6SS), which we named T6SS-1 and T6SS-3 according to previous classification methods (G. Shalom, J. G. Shaw, and M. S. Thomas, Microbiology, 153:2689-2699, 2007, https://doi.org/10.1099/mic.0.2007/006585-0). We created P. sabiae with mutations in each of the two T6SS gene clusters that abrogated their function, and the T6SS-1 mutant was no longer able to outcompete other strains in a contact-dependent manner. Notably, our analysis revealed that T6SS-1 is essential for competition against several important plant pathogens in vitro, including Burkholderia plantarii, Ralstonia solanacearum, Pseudomonas syringae, and Pectobacterium carotovorum. The 9-log reduction in P. syringae cells in the presence of P. sabiae was particularly remarkable. Importantly, in an in vivo assay, P. sabiae was able to protect potato tubers from bacterial soft rot disease caused by P. carotovorum, and this protection was partly dependent on T6SS-1. IMPORTANCE Rhizobia often display additional beneficial traits such as the production of plant hormones and the acquisition of limited essential nutrients that improve plant growth and enhance plant yields. Here, we show that the rhizobial strain P. sabiae antagonizes important phytopathogens such as P. carotovorum, P. syringae, and R. solanacearum and that this effect is due to contact-dependent killing mediated by one of two T6SS systems identified in the complete, de novo assembled genome sequence of P. sabiae. Importantly, co-inoculation of Solanum tuberosum tubers with P. sabiae also resulted in a drastic reduction of soft rot caused by P. carotovorum in an in vivo model system. This result highlights the protective potential of P. sabiae against important bacterial plant diseases, which makes it a valuable candidate for application as a biocontrol agent. It also emphasizes the particular potential of rhizobial inoculants that combine several beneficial effects such as plant growth promotion and biocontrol for sustainable agriculture.


Asunto(s)
Burkholderiaceae , Sistemas de Secreción Tipo VI , Humanos , Sistemas de Secreción Tipo VI/genética , Burkholderiaceae/genética , Pectobacterium carotovorum , Enterobacteriaceae , Enfermedades de las Plantas/microbiología
2.
Front Plant Sci ; 12: 699590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394152

RESUMEN

Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.

3.
Cells ; 10(4)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924023

RESUMEN

Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for nitrogenase activity both in root nodules of papilionoid plants and in free-living growth conditions. Notably, nifV was dispensable in nodules of Mimosa pudica despite the fact that the gene was highly expressed during symbiosis with all tested papilionoid and mimosoid plants. A metabolome analysis of papilionoid and mimosoid root nodules infected with the P. phymatum wild-type strain revealed that among the approximately 400 measured metabolites, homocitrate and other metabolites involved in lysine biosynthesis and degradation have accumulated in all plant nodules compared to uninfected roots, suggesting an important role of these metabolites during symbiosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderiaceae/enzimología , Fabaceae/microbiología , Nitrogenasa/metabolismo , Oxo-Ácido-Liasas/metabolismo , Simbiosis , Burkholderiaceae/genética , Genoma Bacteriano , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Funciones de Verosimilitud , Metaboloma , Filogenia , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología
4.
Front Microbiol ; 11: 1600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765457

RESUMEN

Paraburkholderia phymatum is a rhizobial strain that belongs to the beta-proteobacteria, a group known to form efficient nitrogen-fixing symbioses within root nodules of several legumes, including the agriculturally important common bean. The establishment of the symbiosis requires the exchange of rhizobial and plant signals such as lipochitooligosaccharides (Nod factors), polysaccharides, and flavonoids. Inspection of the genome of the competitive rhizobium P. phymatum revealed the presence of several polysaccharide biosynthetic gene clusters. In this study, we demonstrate that bceN, a gene encoding a GDP-D-mannose 4,6-dehydratase, which is involved in the production of the exopolysaccharide cepacian, an important component of biofilms produced by closely related opportunistic pathogens of the Burkholderia cepacia complex (Bcc), is required for efficient plant colonization. Wild-type P. phymatum was shown to produce cepacian while a bceN mutant did not. Additionally, the bceN mutant produced a significantly lower amount of biofilm and formed less root nodules compared to the wild-type strain with Phaseolus vulgaris as host plant. Finally, expression of the operon containing bceN was induced by the presence of germinated P. vulgaris seeds under nitrogen limiting conditions suggesting a role of this polysaccharide in the establishment of this ecologically important symbiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...