Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Natl Sci Rev ; 11(7): nwae168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071100

RESUMEN

Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences. In this context, Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB) and Bergey's International Society for Microbial Systematics (BISMiS) play a pivotal role in guiding prokaryotic systematics. This review focuses on the historical development of prokaryotic systematics with a focus on the roles of BMSAB and BISMiS. We also explore significant contributions and achievements by microbiologists, highlight the latest progress in the field and anticipate challenges and opportunities within prokaryotic systematics. Additionally, we outline five focal points of BISMiS that are aimed at addressing these challenges. In conclusion, our collaborative effort seeks to enhance ongoing advancements in prokaryotic systematics, ensuring its continued relevance and innovative characters in the contemporary landscape of genomics and bioinformatics.

2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39001714

RESUMEN

In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The core idea is to model how gene trees evolve along a species tree and to explain differences between them via evolutionary events including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for studying genome evolution and highlight recent applications including ancestral gene content inference, the rooting of species trees, and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host-microbe interactions, and symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, temperature, and oxygen use offer enormous potential for understanding the rich tapestry of microbial life.


Asunto(s)
Archaea , Filogenia , Archaea/genética , Archaea/clasificación , Bacterias/genética , Bacterias/clasificación , Evolución Molecular , Genoma Bacteriano , Simbiosis , Ecología
3.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38809778

RESUMEN

The Genome Taxonomy Database (GTDB) provides a species to domain classification of publicly available genomes based on average nucleotide identity (ANI) (for species) and a concatenated gene phylogeny normalized by evolutionary rates (for genus to phylum), which has been widely adopted by the scientific community. Here, we use the Genome UNClutterer (GUNC) software to identify putatively contaminated genomes in GTDB release 07-RS207. We found that GUNC reported 35,723 genomes as putatively contaminated, comprising 11.25 % of the 317,542 genomes in GTDB release 07-RS207. To assess the impact of this high level of inferred contamination on the delineation of taxa, we created 'clean' versions of the 34,846 putatively contaminated bacterial genomes by removing the most contaminated half. For each clean half, we re-calculated the ANI and concatenated gene phylogeny and found that only 77 (0.22 %) of the genomes were not consistent with their original classification. We conclude that the delineation of taxa in GTDB is robust to the putative contamination detected by GUNC.


Asunto(s)
Bacterias , Genoma Bacteriano , Filogenia , Bacterias/genética , Bacterias/clasificación , Programas Informáticos , Bases de Datos Genéticas , Contaminación de ADN
4.
mSphere ; 9(4): e0055523, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38530017

RESUMEN

Human cutaneous squamous cell carcinomas (SCCs) and actinic keratoses (AK) display microbial dysbiosis with an enrichment of staphylococcal species, which have been implicated in AK and SCC progression. SCCs are common in both felines and canines and are often diagnosed at late stages leading to high disease morbidity and mortality rates. Although recent studies support the involvement of the skin microbiome in AK and SCC progression in humans, there is no knowledge of this in companion animals. Here, we provide microbiome data for SCC in cats and dogs using culture-independent molecular profiling and show a significant decrease in microbial alpha diversity on SCC lesions compared to normal skin (P ≤ 0.05). Similar to human skin cancer, SCC samples had an elevated abundance of staphylococci relative to normal skin-50% (6/12) had >50% staphylococci, as did 16% (4/25) of perilesional samples. Analysis of Staphylococcus at the species level revealed an enrichment of the pathogenic species Staphylococcus felis in cat SCC samples, a higher prevalence of Staphylococcus pseudintermedius in dogs, and a higher abundance of Staphylococcus aureus compared to normal skin in both companion animals. Additionally, a comparison of previously published human SCC and perilesional samples against the present pet samples revealed that Staphylococcus was the most prevalent genera across human and companion animals for both sample types. Similarities between the microbial profile of human and cat/dog SCC lesions should facilitate future skin cancer research. IMPORTANCE: The progression of precancerous actinic keratosis lesions (AK) to cutaneous squamous cell carcinoma (SCC) is poorly understood in humans and companion animals, despite causing a significant burden of disease. Recent studies have revealed that the microbiota may play a significant role in disease progression. Staphylococcus aureus has been found in high abundance on AK and SCC lesions, where it secretes DNA-damaging toxins, which could potentiate tumorigenesis. Currently, a suitable animal model to investigate this relationship is lacking. Thus, we examined the microbiome of cutaneous SCC in pets, revealing similarities to humans, with increased staphylococci and reduced commensals on SCC lesions and peri-lesional skin compared to normal skin. Two genera that were in abundance in SCC samples have also been found in human oral SCC lesions. These findings suggest the potential suitability of pets as a model for studying microbiome-related skin cancer progression.


Asunto(s)
Carcinoma de Células Escamosas , Enfermedades de los Gatos , Enfermedades de los Perros , Microbiota , Neoplasias Cutáneas , Piel , Staphylococcus , Gatos , Perros , Animales , Carcinoma de Células Escamosas/microbiología , Carcinoma de Células Escamosas/veterinaria , Neoplasias Cutáneas/microbiología , Neoplasias Cutáneas/veterinaria , Neoplasias Cutáneas/patología , Piel/microbiología , Piel/patología , Enfermedades de los Gatos/microbiología , Staphylococcus/aislamiento & purificación , Staphylococcus/genética , Staphylococcus/clasificación , Staphylococcus/patogenicidad , Enfermedades de los Perros/microbiología , Queratosis Actínica/microbiología , Queratosis Actínica/veterinaria , Queratosis Actínica/patología
5.
mBio ; 15(4): e0018124, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38477597

RESUMEN

A comprehensive microbial surveillance was conducted at NASA's Mars 2020 spacecraft assembly facility (SAF), where whole-genome sequencing (WGS) of 110 bacterial strains was performed. One isolate, designated 179-BFC-A-HST, exhibited less than 80% average nucleotide identity (ANI) to known species, suggesting a novel organism. This strain demonstrated high-level resistance [minimum inhibitory concentration (MIC) >256 mg/L] to third-generation cephalosporins, including ceftazidime, cefpodoxime, combination ceftazidime/avibactam, and the fourth-generation cephalosporin cefepime. The results of a comparative genomic analysis revealed that 179-BFC-A-HST is most closely related to Virgibacillus halophilus 5B73CT, sharing an ANI of 78.7% and a digital DNA-DNA hybridization (dDDH) value of 23.5%, while their 16S rRNA gene sequences shared 97.7% nucleotide identity. Based on these results and the recent recognition that the genus Virgibacillus is polyphyletic, strain 179-BFC-A-HST is proposed as a novel species of a novel genus, Tigheibacillus jepli gen. nov., sp. nov (type strain 179-BFC-A-HST = DSM 115946T = NRRL B-65666T), and its closest neighbor, V. halophilus, is proposed to be reassigned to this genus as Tigheibacillus halophilus comb. nov. (type strain 5B73CT = DSM 21623T = JCM 21758T = KCTC 13935T). It was also necessary to reclassify its second closest neighbor Virgibacillus soli, as a member of a novel genus Paracerasibacillus, reflecting its phylogenetic position relative to the genus Cerasibacillus, for which we propose Paracerasibacillus soli comb. nov. (type strain CC-YMP-6T = DSM 22952T = CCM 7714T). Within Amphibacillaceae (n = 64), P. soli exhibited 11 antibiotic resistance genes (ARG), while T. jepli encoded for 3, lacking any known ß-lactamases, suggesting resistance from variant penicillin-binding proteins, disrupting cephalosporin efficacy. P. soli was highly resistant to azithromycin (MIC >64 mg/L) yet susceptible to cephalosporins and penicillins. IMPORTANCE: The significance of this research extends to understanding microbial survival and adaptation in oligotrophic environments, such as those found in SAF. Whole-genome sequencing of several strains isolated from Mars 2020 mission assembly cleanroom facilities, including the discovery of the novel species Tigheibacillus jepli, highlights the resilience and antimicrobial resistance (AMR) in clinically relevant antibiotic classes of microbes in nutrient-scarce settings. The study also redefines the taxonomic classifications within the Amphibacillaceae family, aligning genetic identities with phylogenetic data. Investigating ARG and virulence factors (VF) across these strains illuminates the microbial capability for resistance under resource-limited conditions while emphasizing the role of human-associated VF in microbial survival, informing sterilization practices and microbial management in similar oligotrophic settings beyond spacecraft assembly cleanrooms such as pharmaceutical and medical industry cleanrooms.


Asunto(s)
Ceftazidima , Ácidos Grasos , Humanos , Ácidos Grasos/análisis , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Hibridación de Ácido Nucleico , Esporas/química , Nucleótidos , ADN , ADN Bacteriano/genética , ADN Bacteriano/química , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
6.
Gut ; 73(5): 751-769, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331563

RESUMEN

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Enfermedad Pulmonar Obstructiva Crónica/etiología , Pulmón/metabolismo , Pulmón/patología , Neumonía/etiología , Inflamación/metabolismo , Carbohidratos/farmacología
7.
Anim Biosci ; 37(2): 396-403, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38186254

RESUMEN

OBJECTIVE: Monofluoroacetate (MFA) is a potent toxin that blocks ATP production via the Krebs cycle and causes acute toxicity in ruminants consuming MFA-containing plants. The rumen bacterium, Cloacibacillus porcorum strain MFA1 belongs to the phylum Synergistota and can produce fluoride and acetate from MFA as the end-products of dehalorespiration. The aim of this study was to identify the genomic basis for the metabolism of MFA by this bacterium. METHODS: A draft genome sequence for C. porcorum strain MFA1 was assembled and quantitative transcriptomic analysis was performed thus highlighting a candidate operon encoding four proteins that are responsible for the carbon-fluorine bond cleavage. Comparative genome analysis of this operon was undertaken with three other species of closely related Synergistota bacteria. RESULTS: Two of the genes in this operon are related to the substrate-binding components of the glycine reductase protein B (GrdB) complex. Glycine shares a similar structure to MFA suggesting a role for these proteins in binding MFA. The remaining two genes in the operon, an antiporter family protein and an oxidoreductase belonging to the radical S-adenosyl methionine superfamily, are hypothesised to transport and activate the GrdB-like protein respectively. Similar operons were identified in a small number of other Synergistota bacteria including type strains of Cloacibacillus porcorum, C. evryensis, and Pyramidobacter piscolens, suggesting lateral transfer of the operon as these genera belong to separate families. We confirmed that all three species can degrade MFA, however, substrate degradation in P. piscolens was notably reduced compared to Cloacibacillus isolates possibly reflecting the loss of the oxidoreductase and antiporter in the P. piscolens operon. CONCLUSION: Identification of this unusual anaerobic fluoroacetate metabolism extends the known substrates for dehalorespiration and indicates the potential for substrate plasticity in amino acid-reducing enzymes to include xenobiotics.

8.
Microb Genom ; 10(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38189216

RESUMEN

Many peptidoglycan-deficient bacteria such as the Mycoplasmatales are known host-associated lineages, lacking the environmental resistance mechanisms and metabolic capabilities necessary for a free-living lifestyle. Several peptidoglycan-deficient and non-sporulating orders of interest are thought to be descended from Gram-positive sporulating Bacilli through reductive evolution. Here we annotate 2650 genomes belonging to the class Bacilli, according to the Genome Taxonomy Database, to predict the peptidoglycan and sporulation phenotypes of three novel orders, RFN20, RF39 and ML615J-28, known only through environmental sequence surveys. These lineages are interspersed between peptidoglycan-deficient non-sporulating orders including the Mycoplasmatales and Acholeplasmatales, and more typical Gram-positive orders such as the Erysipelotrichales and Staphylococcales. We use the extant genotypes to perform ancestral state reconstructions. The novel orders are predicted to have small genomes with minimal metabolic capabilities and to comprise a mix of peptidoglycan-deficient and/or non-sporulating species. In contrast to expectations based on cultured representatives, the order Erysipelotrichales lacks many of the genes involved in peptidoglycan and endospore formation. The reconstructed evolutionary history of these traits suggests multiple independent whole-genome reductions and loss of phenotype via intermediate transition states that continue into the present. We suggest that the evolutionary history of the reduced-genome lineages within the class Bacilli is one driven by multiple independent transitions to host-associated lifestyles, with the degree of reduction in environmental resistance and metabolic capabilities correlated with degree of host association.


Asunto(s)
Mycoplasmatales , Peptidoglicano , Bacterias Grampositivas , Firmicutes , Genotipo
9.
mBio ; 15(2): e0337023, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38259066

RESUMEN

The anaerobic gut fungi (AGF) inhabit the alimentary tracts of herbivores. In contrast to placental mammals, information regarding the identity, diversity, and community structure of AGF in marsupials is extremely sparse. Here, we characterized AGF communities in 61 fecal samples from 10 marsupial species belonging to four families in the order Diprotodontia: Vombatidae (wombats), Phascolarctidae (koalas), Phalangeridae (possums), and Macropodidae (kangaroos, wallabies, and pademelons). An amplicon-based diversity survey using the D2 region of the large ribosomal subunit as a phylogenetic marker indicated that marsupial AGF communities were dominated by eight genera commonly encountered in placental herbivores (Neocallimastix, Caecomyces, Cyllamyces, Anaeromyces, Orpinomyces, Piromyces, Pecoramyces, and Khoyollomyces). Community structure analysis revealed a high level of stochasticity, and ordination approaches did not reveal a significant role for the animal host, gut type, dietary preferences, or lifestyle in structuring marsupial AGF communities. Marsupial foregut and hindgut communities displayed diversity and community structure patterns comparable to AGF communities typically encountered in placental foregut hosts while exhibiting a higher level of diversity and a distinct community structure compared to placental hindgut communities. Quantification of AGF load using quantitative PCR indicated a significantly smaller load in marsupial hosts compared to their placental counterparts. Isolation efforts were only successful from a single red kangaroo fecal sample and yielded a Khoyollomyces ramosus isolate closely related to strains previously isolated from placental hosts. Our results suggest that AGF communities in marsupials are in low abundance and show little signs of selection based on ecological and evolutionary factors.IMPORTANCEThe AGF are integral part of the microbiome of herbivores. They play a crucial role in breaking down plant biomass in hindgut and foregut fermenters. The majority of research has been conducted on the AGF community in placental mammalian hosts. However, it is important to note that many marsupial mammals are also herbivores and employ a hindgut or foregut fermentation strategy for breaking down plant biomass. So far, very little is known regarding the AGF diversity and community structure in marsupial mammals. To fill this knowledge gap, we conducted an amplicon-based diversity survey targeting AGF in 61 fecal samples from 10 marsupial species. We hypothesize that, given the distinct evolutionary history and alimentary tract architecture, novel and unique AGF communities would be encountered in marsupials. Our results indicate that marsupial AGF communities are highly stochastic, present in relatively low loads, and display community structure patterns comparable to AGF communities typically encountered in placental foregut hosts. Our results indicate that marsupial hosts harbor AGF communities; however, in contrast to the strong pattern of phylosymbiosis typically observed between AGF and placental herbivores, the identity and gut architecture appear to play a minor role in structuring AGF communities in marsupials.


Asunto(s)
Micobioma , Humanos , Embarazo , Animales , Femenino , Filogenia , Anaerobiosis , Placenta , Macropodidae , Mamíferos , Hongos
10.
Front Microbiol ; 14: 1293707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045027

RESUMEN

The family Halomonadaceae is the largest family composed of halophilic bacteria, with more than 160 species with validly published names as of July 2023. Several classifications to circumscribe this family are available in major resources, such as those provided by the List of Prokaryotic names with Standing in Nomenclature (LPSN), NCBI Taxonomy, Genome Taxonomy Database (GTDB), and Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB), with some degree of disagreement between them. Moreover, regardless of the classification adopted, the genus Halomonas is not phylogenetically consistent, likely because it has been used as a catch-all for newly described species within the family Halomonadaceae that could not be clearly accommodated in other Halomonadaceae genera. In the past decade, some taxonomic rearrangements have been conducted on the Halomonadaceae based on ribosomal and alternative single-copy housekeeping gene sequence analysis. High-throughput technologies have enabled access to the genome sequences of many type strains belonging to the family Halomonadaceae; however, genome-based studies specifically addressing its taxonomic status have not been performed to date. In this study, we accomplished the genome sequencing of 17 missing type strains of Halomonadaceae species that, together with other publicly available genome sequences, allowed us to re-evaluate the genetic relationship, phylogeny, and taxonomy of the species and genera within this family. The approach followed included the estimate of the Overall Genome Relatedness Indexes (OGRIs) such as the average amino acid identity (AAI), phylogenomic reconstructions using amino acid substitution matrices customized for the family Halomonadaceae, and the analysis of clade-specific signature genes. Based on our results, we conclude that the genus Halovibrio is obviously out of place within the family Halomonadaceae, and, on the other hand, we propose a division of the genus Halomonas into seven separate genera and the transfer of seven species from Halomonas to the genus Modicisalibacter, together with the emendation of the latter. Additionally, data from this study demonstrate the existence of various synonym species names in this family.

12.
BMC Res Notes ; 16(1): 174, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592350

RESUMEN

OBJECTIVES: In order to provide a better insight into the functional capacity of the human gut microbiome, we isolated a novel bacterium, "Candidatus Intestinicoccus colisanans" gen. nov. sp. nov., and performed whole genome sequencing. This study will provide new insights into the functional potential of this bacterium and its role in modulating host health and well-being. We expect that this data resource will be useful in providing additional insight into the diversity and functional potential of the human microbiome. DATA DESCRIPTION: Here, we report the first draft genome sequences of "Candidatus Intestinicoccus colisanans" strains MH27-1 and MH27-2, recovered from faeces collected from healthy human donors. The genomes were sequenced using short-read Illumina technology and whole-genome-based comparisons and phylogenomics reconstruction indicate that "Candidatus Intestinicoccus colisanans" represents a novel genus and species within the family Acutalibacteraceae. Both genomes were estimated to be > 98% completed and to range in size from 2.9 to 3.3 Mb with a G + C content of approximately 51%. The gene repertoire of "Candidatus Intestinicoccus colisanans" indicate it is likely a saccharolytic gut bacterium.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Heces , Microbioma Gastrointestinal/genética , Estado de Salud , Filogenia , Donantes de Tejidos
14.
Genome Biol Evol ; 15(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37463417

RESUMEN

ALE and GeneRax are tools for probabilistic gene tree-species tree reconciliation. Based on a common underlying statistical model of how gene trees evolve along species trees, these methods rely on gene vs. species tree discordance to infer gene duplication, transfer, and loss events, map gene family origins, and root species trees. Published analyses have used these methods to root species trees of Archaea, Bacteria, and several eukaryotic groups, as well as to infer ancestral gene repertoires. However, it was recently suggested that reconciliation-based estimates of duplication and transfer events using the ALE/GeneRax model were unreliable, with potential implications for species tree rooting. Here, we assess these criticisms and find that the methods are accurate when applied to simulated data and in generally good agreement with alternative methodological approaches on empirical data. In particular, ALE recovers variation in gene duplication and transfer frequencies across lineages that is consistent with the known biology of studied clades. In plants and opisthokonts, ALE recovers the consensus species tree root; in Bacteria-where there is less certainty about the root position-ALE agrees with alternative approaches on the most likely root region. Overall, ALE and related approaches are promising tools for studying genome evolution.


Asunto(s)
Algoritmos , Evolución Molecular , Filogenia , Duplicación de Gen , Bacterias/genética , Eucariontes , Modelos Genéticos
15.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37480240

RESUMEN

The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above the rank of genus that were only made publicly available via the GTDB website without associated published taxonomic descriptions. This has sometimes led to confusion in the literature and databases. A number of the provisional GTDB names were later published in other studies, while many still lack authorships. To reduce further confusion, here we propose names and descriptions for 329 GTDB-defined prokaryotic taxa, 223 of which are suitable for validation under the International Code of Nomenclature of Prokaryotes (ICNP) and 49 under the Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode). For the latter, we designated 23 genomes as type material. An additional 57 taxa that do not currently satisfy the validation criteria of either code are proposed as Candidatus.


Asunto(s)
Autoria , Células Procariotas , Bases de Datos Factuales
16.
Nat Biotechnol ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500913

RESUMEN

Studies using 16S rRNA and shotgun metagenomics typically yield different results, usually attributed to PCR amplification biases. We introduce Greengenes2, a reference tree that unifies genomic and 16S rRNA databases in a consistent, integrated resource. By inserting sequences into a whole-genome phylogeny, we show that 16S rRNA and shotgun metagenomic data generated from the same samples agree in principal coordinates space, taxonomy and phenotype effect size when analyzed with the same tree.

17.
Front Chem ; 11: 1196073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408556

RESUMEN

ß-Lactams are the most widely employed antibiotics in clinical settings due to their broad efficacy and low toxicity. However, since their first use in the 1940s, resistance to ß-lactams has proliferated to the point where multi-drug resistant organisms are now one of the greatest threats to global human health. Many bacteria use ß-lactamases to inactivate this class of antibiotics via hydrolysis. Although nucleophilic serine-ß-lactamases have long been clinically important, most broad-spectrum ß-lactamases employ one or two metal ions (likely Zn2+) in catalysis. To date, potent and clinically useful inhibitors of these metallo-ß-lactamases (MBLs) have not been available, exacerbating their negative impact on healthcare. MBLs are categorised into three subgroups: B1, B2, and B3 MBLs, depending on their sequence similarities, active site structures, interactions with metal ions, and substrate preferences. The majority of MBLs associated with the spread of antibiotic resistance belong to the B1 subgroup. Most characterized B3 MBLs have been discovered in environmental bacteria, but they are increasingly identified in clinical samples. B3-type MBLs display greater diversity in their active sites than other MBLs. Furthermore, at least one of the known B3-type MBLs is inhibited by the serine-ß-lactamase inhibitor clavulanic acid, an observation that may promote the design of derivatives active against a broader range of MBLs. In this Mini Review, recent advances in structure-function relationships of B3-type MBLs will be discussed, with a view to inspiring inhibitor development to combat the growing spread of ß-lactam resistance.

18.
Microb Genom ; 9(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294008

RESUMEN

Dehalobacterium formicoaceticum is recognized for its ability to anaerobically ferment dichloromethane (DCM), and a catabolic model has recently been proposed. D. formicoaceticum is currently the only axenic representative of its class, the Dehalobacteriia, according to the Genome Taxonomy Database. However, substantial additional diversity has been revealed in this lineage through culture-independent exploration of anoxic habitats. Here we performed a comparative analysis of 10 members of the Dehalobacteriia, representing three orders, and infer that anaerobic DCM degradation appears to be a recently acquired trait only present in some members of the order Dehalobacteriales. Inferred traits common to the class include the use of amino acids as carbon and energy sources for growth, energy generation via a remarkable range of putative electron-bifurcating protein complexes and the presence of S-layers. The ability of D. formicoaceticum to grow on serine without DCM was experimentally confirmed and a high abundance of the electron-bifurcating protein complexes and S-layer proteins was noted when this organism was grown on DCM. We suggest that members of the Dehalobacteriia are low-abundance fermentative scavengers in anoxic habitats.


Asunto(s)
Carbono , Firmicutes , Fermentación , Anaerobiosis
19.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37310875

RESUMEN

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Asunto(s)
Antibacterianos , Genes Bacterianos , Animales , Humanos , Antibacterianos/farmacología , ARN Ribosómico 16S/genética , Farmacorresistencia Microbiana/genética , Metagenómica/métodos
20.
Front Microbiol ; 14: 1085090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937253

RESUMEN

Introduction: Translocation is a valuable and increasingly used strategy for the management of both threatened and overabundant wildlife populations. However, in some instances the translocated animals fail to thrive. Differences in diet between the source and destination areas may contribute to poor translocation outcomes, which could conceivably be exacerbated if the animals' microbiomes are unsuited to the new diet and cannot adapt. Methods: In this study we tracked how the faecal microbiome of a specialist Eucalyptus folivore, the koala (Phascolarctos cinereus), changed over the course of a year after translocation. We assessed microbiome composition by 16S rRNA amplicon sequencing of faecal pellets. Results: We found no significant overall changes in the faecal microbiomes of koalas post-translocation (n = 17) in terms of microbial richness, diversity or composition when compared to the faecal microbiomes of koalas from an untranslocated control group (n = 12). This was despite the translocated koalas feeding on a greater variety of Eucalyptus species after translocation. Furthermore, while differences between koalas accounted for half of the microbiome variation, estimated diets at the time of sampling only accounted for 5% of the variation in the koala microbiomes between sampling periods. By contrast, we observed that the composition of koala faecal microbiomes at the time of translocation accounted for 37% of between koala variation in post-translocation diet. We also observed that translocated koalas lost body condition during the first month post-translocation and that the composition of the koalas' initial microbiomes were associated with the magnitude of that change. Discussion: These findings suggest that the koala gut microbiome was largely unaffected by dietary change and support previous findings suggesting that the koala gut microbiome influences the tree species chosen for feeding. They further indicate that future research is needed to establish whether the koalas' gut microbiomes are directly influencing their health and condition or whether aspects of the koala gut microbiomes are an indicator of underlying physiological differences or pathologies. Our study provides insights into how animal microbiomes may not always be affected by the extreme upheaval of translocation and highlights that responses may be host species-specific. We also provide recommendations to improve the success of koala translocations in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA