Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7836, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036523

RESUMEN

African Americans have a significantly higher risk of developing chronic kidney disease, especially focal segmental glomerulosclerosis -, than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of African Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1-associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Humanos , Glomeruloesclerosis Focal y Segmentaria/genética , Apolipoproteína L1/genética , Predisposición Genética a la Enfermedad , Factores de Riesgo , Genotipo , Apolipoproteínas/genética
2.
Front Pediatr ; 11: 1248733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868272

RESUMEN

Introduction: The etiology of most cases of nephrotic syndrome (NS) remains unknown, therefore patients are phenotypically categorized based on response to corticosteroid therapy as steroid sensitive NS (SSNS), or steroid resistant NS (SRNS). Genetic risk factors have been identified for SSNS from unbiased genome-wide association studies (GWAS), however it is unclear if these loci are disease risk loci in other forms of NS such as SRNS. Additionally, it remains unknown if these risk loci are associated with response to therapy. Thus, we investigated the association between SSNS risk loci and therapy response in a large, multi-race cohort of children along the entire spectrum of childhood-onset NS. Methods: We enrolled 1,000 patients with childhood-onset NS comprised of SSNS and SRNS. Genotyping was done using TaqMan and Direct Sanger Sequencing for 9 previously reported childhood SSNS risk loci. We compared the allele frequencies (AF) and variant burden between NS vs. controls and SRNS vs. SSNS. Results: All 9 risk loci were associated with NS compared with healthy controls (p = 3.5 × 10-3-<2.2 × 10-16). Variant burden greater than 7 was associated with risk of SRNS (OR 7.4, 95% CI 4.6-12.0, p = 8.2 × 10-16). Conclusion: Our study showed that genetic risk loci for childhood SSNS are associated with pattern of therapy response, may help predict disease outcome, and set the stage for individualized treatment of NS.

3.
medRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577628

RESUMEN

Black Americans have a significantly higher risk of developing chronic kidney disease (CKD), especially focal segmental glomerulosclerosis (FSGS), than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of Black Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1 -associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.

4.
Front Pediatr ; 10: 915174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874595

RESUMEN

Background: Focal segmental glomerulosclerosis (FSGS) is a major cause of end stage kidney disease, with the collapsing form having the worst prognosis. Study of families with hereditary FSGS has provided insight into disease mechanisms. Methods: In this report, we describe a sibling pair with NUP93 mutations and collapsing FSGS (cFSGS). For each brother, we performed next generation sequencing and segregation analysis by direct sequencing. To determine if the variants found in the index family are a common cause of cFSGS, we screened 7 patients with cFSGS, gleaned from our cohort of 200 patients with FSGS, for variants in NUP93 as well as for APOL1 high-risk genotypes. Results: We identified segregating compound heterozygous NUP93 variants (1) c.1772G > T p.G591V, 2) c.2084T > C p.L695S) in the two brothers. We did not find any pathogenic variants in the seven patients with cFSGS from our cohort, and as expected five of these seven patients carried the APOL1 high-risk genotype. Conclusion: To the best of our knowledge, this is the first report of cFSGS in patients with NUP93 mutations, based on this report, mutations in NUP93 and other nucleoporin genes should be considered when evaluating a child with familial cFSGS. Determining the mechanisms by which these variants cause cFSGS may provide insight into the pathogenesis of the more common primary and virus-mediated forms of cFSGS.

5.
JCI Insight ; 7(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34874915

RESUMEN

We performed next-generation sequencing in patients with familial steroid-sensitive nephrotic syndrome (SSNS) and identified a homozygous segregating variant (p.H310Y) in the gene encoding clavesin-1 (CLVS1) in a consanguineous family with 3 affected individuals. Knockdown of the clavesin gene in zebrafish (clvs2) produced edema phenotypes due to disruption of podocyte structure and loss of glomerular filtration barrier integrity that could be rescued by WT CLVS1 but not the p.H310Y variant. Analysis of cultured human podocytes with CRISPR/Cas9-mediated CLVS1 knockout or homozygous H310Y knockin revealed deficits in clathrin-mediated endocytosis and increased susceptibility to apoptosis that could be rescued with corticosteroid treatment, mimicking the steroid responsiveness observed in patients with SSNS. The p.H310Y variant also disrupted binding of clavesin-1 to α-tocopherol transfer protein, resulting in increased reactive oxygen species (ROS) accumulation in CLVS1-deficient podocytes. Treatment of CLVS1-knockout or homozygous H310Y-knockin podocytes with pharmacological ROS inhibitors restored viability to control levels. Taken together, these data identify CLVS1 as a candidate gene for SSNS, provide insight into therapeutic effects of corticosteroids on podocyte cellular dynamics, and add to the growing evidence of the importance of endocytosis and oxidative stress regulation to podocyte function.


Asunto(s)
Proteínas Portadoras/genética , Endocitosis , Síndrome Nefrótico , Estrés Oxidativo , Podocitos , Corticoesteroides , Animales , Apoptosis/efectos de los fármacos , Sistemas CRISPR-Cas/genética , Células Cultivadas , Endocitosis/efectos de los fármacos , Endocitosis/genética , Técnicas de Inactivación de Genes , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Pez Cebra , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...