Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Emerg Infect Dis ; 29(11): 2362-2365, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877593

RESUMEN

In this retrospective study, we measured enterovirus D68 (EV-D68) genomic RNA in wastewater solids longitudinally at 2 California, USA, wastewater treatment plants twice per week for 26 months. EV-D68 RNA was undetectable except when concentrations increased from mid-July to mid-December 2022, which coincided with a peak in confirmed EV-D68 cases.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Mielitis , Humanos , Enterovirus Humano D/genética , Estudios Retrospectivos , Aguas Residuales , Infecciones por Enterovirus/epidemiología , Mielitis/epidemiología , Brotes de Enfermedades , California/epidemiología , ARN , Enterovirus/genética
2.
Environ Sci Technol Lett ; 10(8): 622-627, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37577361

RESUMEN

Wastewater monitoring can provide insights into respiratory disease occurrence in communities that contribute to the wastewater system. Using daily measurements of RNA of influenza A (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (HMPV), as well as SARS-CoV-2 in wastewater solids from eight publicly owned treatment works in the Greater San Francisco Bay Area of California between July 2022 and early July 2023, we identify a "tripledemic" when concentrations of IAV, RSV, and SARS-CoV-2 peaked at approximately the same time. HMPV was also widely circulating. We designed novel hydrolysis probe RT-PCR assays for different IAV subtype markers to discern that the dominant circulating IAV subtype was H3N2. We show that wastewater data can be used to identify the onset and offset of wastewater disease occurrence events. This information can provide insight into disease epidemiology and timely, localized information to inform hospital staffing and clinical decision making to respond to circulating viruses. Whereas RSV and IAV wastewater events were mostly regionally coherent, HMPV events displayed localized occurrence patterns.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37550566

RESUMEN

BACKGROUND: Human norovirus (HuNoV) is a leading cause of disease globally, yet actual incidence is unknown. HuNoV infections are not reportable in the United States, and surveillance is limited to tracking severe illnesses or outbreaks. Wastewater monitoring for HuNoV has been done previously and results indicate it is present in wastewater influent and concentrations are associated with HuNoV infections in the communities contributing to wastewater. However, work has mostly been limited to monthly samples of liquid wastewater at one or a few wastewater treatment plants (WWTPs). OBJECTIVE: The objectives of this study are to investigate whether HuNoV GII preferentially adsorbs to wastewater solids, investigate concentrations of HuNoV GII in wastewater solids in wastewater treatment plants across the county, and explore how those relate to clinical measures of disease occurrence. In addition, we aim to develop and apply a mass-balance model that predicts the fraction of individuals shedding HuNoV in their stool based on measured concentrations in wastewater solids. METHODS: We measured HuNoV GII RNA in matched wastewater solids and liquid influent in 7 samples from a WWTP. We also applied the HuNoV GII assay to measure viral RNA in over 6000 wastewater solids samples from 145 WWTPs from across the United States daily to three times per week for up to five months. Measurements were made using digital droplet RT-PCR. RESULTS: HuNoV GII RNA preferentially adsorbs to wastewater solids where it is present at 1000 times the concentration in influent. Concentrations of HuNoV GII RNA correlate positively with clinical HuNoV positivity rates. Model output of the fraction of individuals shedding HuNoV is variable and uncertain, but consistent with indirect estimates of symptomatic HuNoV infections in the United States. IMPACT STATEMENT: Illness caused by HuNoV is not reportable in the United States so there is limited data on disease occurrence. Wastewater monitoring can provide information about the community spread of HuNoV. Data from wastewater can be available within 24 h of sample receipt at a laboratory. Wastewater is agnostic to whether individuals seek medical care, are symptomatic, and the severity of illness. Knowledge gleaned from wastewater may be used by public health professionals to make recommendations on hand washing, surface disinfection, or other behaviors to reduce transmission of HuNoV, or medical doctors to inform clinical decision making.

4.
PeerJ ; 11: e15631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397016

RESUMEN

Concentrations of SARS-CoV-2 RNA in wastewater settled solids from publicly owned treatment works (POTWs) historically correlated strongly with laboratory confirmed incident COVID-19 case data. With the increased availability of at-home antigen tests since late 2021 and early 2022, laboratory test availability and test seeking behavior has decreased. In the United States, the results from at-home antigen tests are not typically reportable to public health agencies and thus are not counted in case reports. As a result, the number of reported laboratory-confirmed incident COVID-19 cases has decreased dramatically, even during times of increased test positivity rates and wastewater concentrations of SARS-CoV-2 RNA. Herein, we tested whether the correlative relationship between wastewater concentrations of SARS-CoV-2 RNA and reported laboratory-confirmed COVID-19 incidence rate has changed since 1 May 2022, a point in time immediately before the onset of the BA.2/BA.5 surge, the first surge to begin after at-home antigen test availability was high in the region. We used daily data from three POTWs in the Greater San Francisco Bay Area of California, USA for the analysis. We found that although there is a significant positive association between wastewater measurements and incident rate data collected after 1 May 2022, the parameters describing the relationship are different than those describing the relationship between the data collected prior to 1 May 2022. If laboratory test seeking or availability continues to change, the relationship between wastewater and reported case data will continue to change. Our results suggest, assuming SARS-CoV-2 RNA shedding remains relatively stable among those infected with the virus as different variants emerge, that wastewater concentrations of SARS-CoV-2 RNA can be used to estimate COVID-19 cases as they would have been during the time when laboratory testing availability and test seeking behavior were at a high (here, before 1 May 2022) using the historical relationship between SARS-CoV-2 RNA and COVID-19 case data.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Aguas Residuales , ARN Viral/genética , Proyectos de Investigación
5.
Sci Data ; 10(1): 396, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349355

RESUMEN

We measured concentrations of SARS-CoV-2, influenza A and B virus, respiratory syncytial virus (RSV), mpox virus, human metapneumovirus, norovirus GII, and pepper mild mottle virus nucleic acids in wastewater solids at twelve wastewater treatment plants in Central California, USA. Measurements were made daily for up to two years, depending on the wastewater treatment plant. Measurements were made using digital droplet (reverse-transcription-) polymerase chain reaction (RT-PCR) following best practices for making environmental molecular biology measurements. These data can be used to better understand disease occurrence in communities contributing to the wastewater.


Asunto(s)
Metapneumovirus , ARN Viral , Virus Sincitial Respiratorio Humano , SARS-CoV-2 , Humanos , COVID-19 , Aguas Residuales
6.
Lancet Microbe ; 4(5): e340-e348, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965504

RESUMEN

BACKGROUND: Respiratory disease is a major cause of morbidity and mortality; however, surveillance for circulating respiratory viruses is passive and biased. Wastewater-based epidemiology has been used to understand SARS-CoV-2, influenza A, and respiratory syncytial virus (RSV) infection rates at a community level but has not been used to investigate other respiratory viruses. We aimed to use wastewater-based epidemiology to understand community viral respiratory infection occurrence. METHODS: A retrospective wastewater-based epidemiology surveillance study was carried out at a large wastewater treatment plant located in California, USA. Using droplet digital RT-PCR, we measured RNA concentrations of influenza A and influenza B viruses, RSV A and RSV B, parainfluenza (1-4) viruses, rhinovirus, seasonal coronaviruses, and metapneumovirus in wastewater solids three times per week for 17 months (216 samples) between Feb 1, 2021, and June 21, 2022. Novel probe-based RT-PCR assays for non-influenza viral targets were developed and validated. We compared viral RNA concentrations to positivity rates for viral infections from clinical specimens submitted to California Sentinel Clinical Laboratories (sentinel laboratories) to assess concordance between the two datasets. FINDINGS: We detected RNA from all tested viruses in wastewater solids. Human rhinovirus (median concentration 4300 [0-9500] copies per gram dry weight) and seasonal human coronaviruses (35 000 [17 000-56 000]) were found at the highest concentrations. Concentrations of viral RNA correlated significantly and positively with positivity rates of associated viral diseases from sentinel laboratories (tau 0·32-0·57, p<0·0009); the only exceptions were influenza B and RSV A, which were rarely detected in wastewater solids. Measurements from wastewater indicated coronavirus OC43 dominated the seasonal human coronavirus infections whereas parainfluenza 3 dominated among parainfluenza infections during the study period. Concentrations of all tested viral RNA decreased noticeably after the omicron BA.1 surge suggesting a connection between changes in human behaviour during the surge and transmission of all respiratory viruses. INTERPRETATION: Wastewater-based epidemiology can be used to obtain information on circulation of respiratory viruses at a localised, community level without the need to test many individuals because a single sample of wastewater represents the entire contributing community. Results from wastewater can be available within 24 h of sample collection, generating real time information to inform public health responses, clinical decision making, and individual behaviour modifications. FUNDING: CDC Foundation.


Asunto(s)
COVID-19 , Gripe Humana , Metapneumovirus , Ácidos Nucleicos , Infecciones por Paramyxoviridae , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virosis , Humanos , Gripe Humana/epidemiología , Metapneumovirus/genética , Rhinovirus/genética , Aguas Residuales , Estaciones del Año , Pandemias , Estudios Retrospectivos , Infecciones del Sistema Respiratorio/epidemiología , COVID-19/epidemiología , SARS-CoV-2/genética , Virus Sincitial Respiratorio Humano/genética , Infecciones por Paramyxoviridae/epidemiología , Virosis/epidemiología , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus de la Influenza B/genética , ARN Viral/genética , ARN Viral/análisis
8.
ACS ES T Water ; 2(11): 2167-2174, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36380770

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater settled solids correlate well with coronavirus disease 2019 (COVID-19) incidence rates (IRs). Here, we develop distributed lag models to estimate IRs using concentrations of SARS-CoV-2 RNA from wastewater solids and investigate the impact of sampling frequency on model performance. SARS-CoV-2 N gene and pepper mild mottle virus (PMMoV) RNA concentrations were measured daily at four wastewater treatment plants in California. Artificially reduced data sets were produced for each plant with sampling frequencies of once every 2, 3, 4, and 7 days. Sewershed-specific models that related daily N/PMMoV to IR were fit for each sampling frequency with data from mid-November 2020 through mid-July 2021, which included the period of time during which Delta emerged. Models were used to predict IRs during a subsequent out-of-sample time period. When sampling occurred at least once every 4 days, the in- and out-of-sample root-mean-square error changed by <7 cases/100 000 compared to daily sampling across sewersheds. This work illustrates that real-time, daily predictions of IR are possible with small errors, despite changes in circulating variants, when sampling frequency is once every 4 days or more. However, reduced sampling frequency may not serve other important wastewater surveillance use cases.

9.
Environ Sci Technol Lett ; 9(6): 575-580, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35711323

RESUMEN

Greater knowledge of circulating SARS-CoV-2 variants can inform pandemic response, vaccine development, disease epidemiology, and use of monoclonal antibody treatments. We developed custom assays targeting characteristic mutations in SARS-CoV-2 variants Omicron BA.1 and BA.2 and confirmed their sensitivity and specificity in silico and in vitro. We then applied these assays to daily wastewater solid samples from eight publicly owned treatment works in the greater Bay Area of California, United States, over four months to obtain a spatially and temporally intensive data set. We documented regional replacement of BA.1 with BA.2 in agreement with, and ahead of, clinical sequencing data. This study highlights the utility of wastewater surveillance for real-time tracking of SARS-CoV-2 sublineage circulation. The results suggest that concerted efforts to design RT-PCR assays that target variant and variant sublineage characteristic mutations for wide-scale wastewater monitoring implementation will be informative for pandemic response.

10.
Environ Health Perspect ; 130(5): 57011, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617001

RESUMEN

BACKGROUND: The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clinical testing or reporting strategies change. OBJECTIVES: We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to estimate Re in near real time, independent of clinical data and without the associated biases. METHODS: We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to the daily COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence. RESULTS: The method to estimate Re from wastewater worked robustly on data from two different countries and two wastewater matrices. The resulting estimates were as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. DISCUSSION: To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low-cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens. https://doi.org/10.1289/EHP10050.


Asunto(s)
COVID-19 , SARS-CoV-2 , Número Básico de Reproducción , COVID-19/epidemiología , Humanos , ARN Viral , Aguas Residuales
11.
Appl Environ Microbiol ; 88(8): e0004522, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35380449

RESUMEN

Changes in the circulation of SARS-CoV-2 variants of concern (VOCs) may require changes in the public health response to the COVID-19 pandemic, as they have the potential to evade vaccines and pharmaceutical interventions and may be more transmissive than other SARS-CoV-2 variants. As such, it is essential to track and prevent their spread in susceptible communities. We developed digital reverse transcription (RT)-PCR assays for mutations characteristic of VOCs and used them to quantify those mutations in samples of wastewater settled solids collected from a publicly owned treatment works (POTW) during different phases of the COVID-19 pandemic. Wastewater concentrations of single mutations characteristic of each VOC, normalized by the concentration of a conserved SARS-CoV-2 N gene, correlate with regional estimates of the proportion of clinical infections caused by each VOC. These results suggest that targeted RT-PCR assays can be used to detect variants circulating in communities and inform the public health response to the pandemic. IMPORTANCE Wastewater represents a pooled biological sample of the contributing community and thus a resource for assessing community health. Here, we show that emergence, spread, and disappearance of SARS-CoV-2 infections caused by variants of concern are reflected in the presence of variant genomic RNA in wastewater settled solids. This work highlights an important public health use case for wastewater.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Aguas Residuales
12.
Emerg Infect Dis ; 28(5): 940-947, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349402

RESUMEN

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is critical for public health management of coronavirus disease. Sequencing is resource-intensive and incompletely representative, and not all isolates can be sequenced. Because wastewater SARS-CoV-2 RNA concentrations correlate with coronavirus disease incidence in sewersheds, tracking VOCs through wastewater is appealing. We developed digital reverse transcription PCRs to monitor abundance of select mutations in Alpha and Delta VOCs in wastewater settled solids, applied these to July 2020-August 2021 samples from 2 large US metropolitan sewersheds, and compared results to estimates of VOC abundance from case isolate sequencing. Wastewater measurements tracked closely with case isolate estimates (Alpha, rp 0.82-0.88; Delta, rp 0.97). Mutations were detected in wastewater even at levels <5% of total SARS-CoV-2 RNA and in samples available 1-3 weeks before case isolate results. Wastewater variant monitoring should be strategically deployed to complement case isolate sequencing.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Estados Unidos/epidemiología , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
14.
Nat Biotechnol ; 38(4): 482-492, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32265562

RESUMEN

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.


Asunto(s)
Aedes/microbiología , Aedes/fisiología , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Mosquitos Vectores/fisiología , Wolbachia/fisiología , Aedes/crecimiento & desarrollo , Migración Animal , Animales , California , Femenino , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología , Masculino , Control de Mosquitos/estadística & datos numéricos , Mosquitos Vectores/crecimiento & desarrollo , Dinámica Poblacional , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...