Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Focus (Am Psychiatr Publ) ; 22(2): 229-241, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38680981

RESUMEN

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by communication and social behavior deficits. The presence of restricted and repetitive behaviors often accompanies these deficits, and these characteristics can range from mild to severe. The past several decades have seen a significant rise in the prevalence of ASD. The etiology of ASD remains unknown; however, genetic and environmental risk factors play a role. Multiple hypotheses converge to suggest that neuroinflammation, or at least the interaction between immune and neural systems, may be involved in the etiology of some ASD cases or groups. Repeated evidence of innate immune dysfunction has been seen in ASD, often associated with worsening behaviors. This evidence includes data from circulating myeloid cells and brain resident macrophages/microglia in both human and animal models. This comprehensive review presents recent findings of innate immune dysfunction in ASD, including aberrant innate cellular function, evidence of neuroinflammation, and microglia activation. Appeared originally in Brain Behav Immun 2023; 108:245-254.

2.
Brain Behav Immun ; 108: 245-254, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36494048

RESUMEN

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by communication and social behavior deficits. The presence of restricted and repetitive behaviors often accompanies these deficits, and these characteristics can range from mild to severe. The past several decades have seen a significant rise in the prevalence of ASD. The etiology of ASD remains unknown; however, genetic and environmental risk factors play a role. Multiple hypotheses converge to suggest that neuroinflammation, or at least the interaction between immune and neural systems, may be involved in the etiology of some ASD cases or groups. Repeated evidence of innate immune dysfunction has been seen in ASD, often associated with worsening behaviors. This evidence includes data from circulating myeloid cells and brain resident macrophages/microglia in both human and animal models. This comprehensive review presents recent findings of innate immune dysfunction in ASD, including aberrant innate cellular function, evidence of neuroinflammation, and microglia activation.


Asunto(s)
Trastorno del Espectro Autista , Animales , Humanos , Trastorno del Espectro Autista/etiología , Enfermedades Neuroinflamatorias , Encéfalo , Microglía , Inmunidad Innata
3.
Brain Behav Immun Health ; 2: 100038, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34589829

RESUMEN

Disturbances of the immune system and immune responses after activation are a common finding in neuropsychiatric disorders. Psychotic and affective disorders such as major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BD) also share high rates of comorbidity with inflammatory and metabolic disorders. Evidence of elevated circulating inflammatory cytokines, altered numbers and function of immune cells, and evidence of neuroinflammation including activation of microglia in the brain have been found in patients with SCZ, BD and MDD. Often these findings correlate to psychological state at the time of measurement. However, significant variation exists across these studies in many aspects, creating challenges in identifying a specific signature of immune dysfunction in these disorders. Innate immune dysfunction, and alterations in monocytes, the critical sentinel cells of the innate immune system, have been seen repeatedly in all three of these disorders, with frequent overlap in findings. In this review, dysfunction specific to the innate arm of the immune system is compared for overlapping evidence across three major psychotic and affective disorders.

4.
J Bacteriol ; 176(12): 3455-9, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8206821

RESUMEN

myo-Inositol hexakisphosphate (InsP6), which is found in soil and most, if not all, plant and animal cells, has been estimated to have an affinity for Fe3+ in the range of 10(25) to 10(30) M-1. In this report, we demonstrate that the Fe-InsP6 complex has siderophore activity and is able to reverse the iron-restricted growth inhibition of Pseudomonas aeruginosa by ethylene diamine di(o-hydroxyphenyl)acetic acid. With 55Fe-InsP6 in transport studies, iron uptake is strongly iron regulated, being repressed after growth in iron-replete conditions and inhibited by treatment with potassium cyanide and carbonyl cyanide m-chlorophenylhydrazone. The kinetics of iron transport revealed a Km of 100 nM. Self-displacement of binding of [3H]InsP6 to isolated membranes by InsP6 revealed a single class of binding sites (Kd = 143 +/- 6 nM; Hill coefficient, 1.1 +/- 0.1). The binding of [3H]InsP6 to membranes was not dependent on whether cells had been grown under conditions of high or low iron concentrations. We believe that this is the first report of inositol polyphosphate activity in prokaryotic cells.


Asunto(s)
Compuestos Férricos/metabolismo , Hierro/metabolismo , Ácido Fítico/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo , Unión Competitiva , División Celular/efectos de los fármacos , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Compuestos Férricos/farmacología , Ácido Fítico/farmacología , Pseudomonas aeruginosa/crecimiento & desarrollo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA