Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(12): e1010561, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542674

RESUMEN

Diverse bacterial species use type IVa pili (T4aP) to interact with their environments. The dynamic extension and retraction of T4aP is critical for their function, but the mechanisms that regulate this dynamic activity remain poorly understood. T4aP are typically extended via the activity of a dedicated extension motor ATPase and retracted via the action of an antagonistic retraction motor ATPase called PilT. These motors are generally functionally independent, and loss of PilT commonly results in T4aP hyperpiliation due to undeterred pilus extension. However, for the mannose-sensitive hemagglutinin (MSHA) T4aP of Vibrio cholerae, the loss of PilT unexpectedly results in a loss of surface piliation. Here, we employ a combination of genetic and cell biological approaches to dissect the underlying mechanism. Our results demonstrate that PilT is necessary for MSHA pilus extension in addition to its well-established role in promoting MSHA pilus retraction. Through a suppressor screen, we also provide genetic evidence that the MshA major pilin impacts pilus extension. Together, these findings contribute to our understanding of the factors that regulate pilus extension and describe a previously uncharacterized function for the PilT motor ATPase.


Asunto(s)
Adenosina Trifosfatasas , Vibrio cholerae , Adenosina Trifosfatasas/genética , Hemaglutininas , Manosa , Vibrio cholerae/genética , Fimbrias Bacterianas/genética , Proteínas Fimbrias/genética , Proteínas Bacterianas/genética
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35135874

RESUMEN

Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)-sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Óxido Nítrico/farmacología , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Adhesión Bacteriana/fisiología , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Vibrio cholerae/genética
3.
Nat Commun ; 11(1): 1549, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32214098

RESUMEN

Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization.


Asunto(s)
GMP Cíclico/análogos & derivados , Fimbrias Bacterianas/metabolismo , Vibrio cholerae/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Rastreo Celular , GMP Cíclico/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Movimiento , Vibrio cholerae/citología , Vibrio cholerae/metabolismo
4.
PLoS Genet ; 15(10): e1008448, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626631

RESUMEN

Bacterial type IV pili are critical for diverse biological processes including horizontal gene transfer, surface sensing, biofilm formation, adherence, motility, and virulence. These dynamic appendages extend and retract from the cell surface. In many type IVa pilus systems, extension occurs through the action of an extension ATPase, often called PilB, while optimal retraction requires the action of a retraction ATPase, PilT. Many type IVa systems also encode a homolog of PilT called PilU. However, the function of this protein has remained unclear because pilU mutants exhibit inconsistent phenotypes among type IV pilus systems and because it is relatively understudied compared to PilT. Here, we study the type IVa competence pilus of Vibrio cholerae as a model system to define the role of PilU. We show that the ATPase activity of PilU is critical for pilus retraction in PilT Walker A and/or Walker B mutants. PilU does not, however, contribute to pilus retraction in ΔpilT strains. Thus, these data suggest that PilU is a bona fide retraction ATPase that supports pilus retraction in a PilT-dependent manner. We also found that a ΔpilU mutant exhibited a reduction in the force of retraction suggesting that PilU is important for generating maximal retraction forces. Additional in vitro and in vivo data show that PilT and PilU act as independent homo-hexamers that may form a complex to facilitate pilus retraction. Finally, we demonstrate that the role of PilU as a PilT-dependent retraction ATPase is conserved in Acinetobacter baylyi, suggesting that the role of PilU described here may be broadly applicable to other type IVa pilus systems.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas Fimbrias/fisiología , Fimbrias Bacterianas/enzimología , Acinetobacter/fisiología , Mutación , Multimerización de Proteína/fisiología , Vibrio cholerae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...