Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 33(4): 78, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28341907

RESUMEN

Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by ß-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.


Asunto(s)
Bacterias/enzimología , Biocombustibles/microbiología , Hongos/crecimiento & desarrollo , Glicósido Hidrolasas/metabolismo , Inulina/metabolismo , Plantas/metabolismo , Aspergillus/enzimología , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Fermentación , Proteínas Fúngicas/metabolismo , Hongos/enzimología , Residuos Industriales , Kluyveromyces/enzimología , Penicillium/enzimología , Pseudomonas/enzimología
2.
World J Microbiol Biotechnol ; 33(3): 51, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28190182

RESUMEN

Fermentative production of butanol for use as a biofuel or chemical feedstock is regarded as a promising renewable technology that reduces greenhouse gas emissions and has the potential to become a substitute for non-sustainable chemical production route. However, butanol toxicity to the producing microbes remains a barrier to achieving sufficiently high titers for cost-effective butanol fermentation and recovery. Investigations of the external stress of high butanol concentration on butanol-producing microbial strains will aid in developing improved microbes with increased tolerance to butanol. With currently available molecular tool boxes, researchers have aimed to address and understand how butanol affects different microbes. This review will cover the individual organism's inherent responses to surrounding butanol levels, and the collective efforts by researchers to improve production and tolerance. The specific microorganisms discussed here include the native butanol producer Clostridium species, the fermentation industrial model Saccharomyces cerevisiae and the photosynthetic cyanobacteria, the genetic engineering workhorse Escherichia coli, and also the butanol-tolerant lactic acid bacteria that utilize diverse substrates. The discussion will help to understand the physiology of butanol resistance and to identify specific butanol tolerance genes that will lead to informed genetic engineering strategies for new strain development.


Asunto(s)
Butanoles/metabolismo , Ingeniería Genética/métodos , Microbiología Industrial/métodos , Clostridium/genética , Clostridium/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Tolerancia a Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Environ Pollut ; 220(Pt B): 1447-1455, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27829513

RESUMEN

Research addressing the occurrence, fate and effects of pharmaceuticals in the aquatic environment has expanded rapidly over the past two decades, primarily due to the development of improved chemical analysis methods. Significant research gaps still remain, however, including a lack of longer term, repeated monitoring of rivers, determination of temporal and spatial changes in pharmaceutical concentrations, and inputs from sources other than wastewater treatment plants (WWTPs), such as combined sewer overflows (CSOs). In addressing these gaps it was found that the five pharmaceuticals studied were routinely (51-94% of the time) present in effluents and receiving waters at concentrations ranging from single ng to µg L-1. Mean concentrations were in the tens to hundreds ng L-1 range and CSOs appear to be a significant source of pharmaceuticals to water courses in addition to WWTPs. Receiving water concentrations varied throughout the day although there were no pronounced peaks at particular times. Similarly, concentrations varied throughout the year although no consistent patterns were observed. No dissipation of the study compounds was found over a 5 km length of river despite no other known inputs to the river. In conclusion, pharmaceuticals are routinely present in semi-rural and urban rivers and require management alongside more traditional pollutants.


Asunto(s)
Ríos/química , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Agua/química , Monitoreo del Ambiente , Aguas Residuales/análisis , Agua/análisis , Calidad del Agua
4.
J Ind Microbiol Biotechnol ; 43(7): 927-39, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27130462

RESUMEN

Economically important plants contain large amounts of inulin. Disposal of waste resulting from their processing presents environmental issues. Finding microorganisms capable of converting inulin waste to biofuel and valuable co-products at the processing site would have significant economic and environmental impact. We evaluated the ability of two mutant strains of Kluyveromyces marxianus (Km7 and Km8) to utilize inulin for ethanol production. In glucose medium, both strains consumed all glucose and produced 0.40 g ethanol/g glucose at 24 h. In inulin medium, Km7 exhibited maximum colony forming units (CFU)/mL and produced 0.35 g ethanol/g inulin at 24 h, while Km8 showed maximum CFU/mL and produced 0.02 g ethanol/g inulin at 96 h. At 24 h in inulin + glucose medium, Km7 produced 0.40 g ethanol/g (inulin + glucose) and Km8 produced 0.20 g ethanol/g (inulin + glucose) with maximum CFU/mL for Km8 at 72 h, 40 % of that for Km7 at 36 h. Extracellular inulinase activity at 6 h for both Km7 and Km8 was 3.7 International Units (IU)/mL.


Asunto(s)
Etanol/metabolismo , Glicósido Hidrolasas/metabolismo , Inulina/química , Kluyveromyces/crecimiento & desarrollo , Biocombustibles , Café/química , Medios de Cultivo/química , Glucosa/química , Kluyveromyces/enzimología , Kluyveromyces/genética , Mutación
5.
Appl Microbiol Biotechnol ; 99(22): 9723-43, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26272089

RESUMEN

Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.


Asunto(s)
Amoníaco/metabolismo , Metabolismo de los Hidratos de Carbono , Aceites/metabolismo , Proteínas/metabolismo , Rayos Ultravioleta , Yarrowia/metabolismo , Yarrowia/efectos de la radiación , Aerobiosis , Café/metabolismo , Medios de Cultivo/química , Tamizaje Masivo , Mutación , Yarrowia/crecimiento & desarrollo
6.
J Lab Autom ; 20(6): 621-35, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25720598

RESUMEN

A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains.


Asunto(s)
Cromosomas Artificiales de Levadura , Enzimas/genética , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/genética , Transformación Genética , Xilosa/metabolismo , Café , Medios de Cultivo/química , Etanol/metabolismo , Fermentación , Expresión Génica , Saccharomyces cerevisiae/crecimiento & desarrollo , Zea mays
7.
Appl Microbiol Biotechnol ; 98(20): 8413-31, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25204861

RESUMEN

The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.


Asunto(s)
Biocombustibles , Residuos Industriales , Biotecnología/métodos , Biotransformación , Café , Manipulación de Alimentos/métodos , Kluyveromyces/crecimiento & desarrollo , Kluyveromyces/metabolismo , Rhodotorula/crecimiento & desarrollo , Rhodotorula/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharum , Yarrowia/crecimiento & desarrollo , Yarrowia/metabolismo , Zea mays
8.
Biotechnol Lett ; 36(8): 1735-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24770871

RESUMEN

Lycotoxin I, from the wolf spider (Lycosa carolinensis), is an amphipathic pore-forming peptide that has antimicrobial and anti-insect activity. Constitutive expression of a lycotoxin I modified for oral toxicity to insects in tobacco (Nicotiana tabacum) conferred significantly enhanced resistance to larvae of the corn earworm (Helicoverpa zea) and cigarette beetle (Lasioderma serricorne). Gene expression levels of modified lycotoxin I were negatively correlated to the survival of corn earworm larvae. In addition, pathogenic symptoms caused by Pseudomonas syringae pathovar tabaci and Alternaria alternata on the modified lycotoxin I-expressing leaves were significantly less severe than on wild type leaves. These results indicate that modified lycotoxin I expression in tobacco can potentially protect leaf tissue from a broad spectrum of pests and pathogens.


Asunto(s)
Bacterias/crecimiento & desarrollo , Insectos/crecimiento & desarrollo , Nicotiana/metabolismo , Venenos de Araña/metabolismo , Arañas/química , Animales , Bacterias/efectos de los fármacos , Bioensayo , Cruzamientos Genéticos , Resistencia a la Enfermedad , Insectos/efectos de los fármacos , Larva/fisiología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Nicotiana/genética , Nicotiana/inmunología
9.
Appl Biochem Biotechnol ; 172(7): 3488-501, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24549802

RESUMEN

A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulases including ß-xylosidase (0.209 U/mg) and arabinofuranosidase (0.230 U/mg), after the bacterium was grown in xylan for 24 h. Partially purified DC3 endoxylanase exhibited a molecular mass of approximately 43 kDa according to zymography with an optimal pH of 7 and optimal temperature of 70 °C. The kinetic constants, K m and V max, were 13.8 mg/mL and 77.5 µmol xylose/min·mg xylan, respectively. The endoxylanase was highly stable and maintained 70 % of its original activity after 16 h incubation at 70 °C. The thermostable properties and presence of three different hemicellulases of Geobacillus sp. DC3 strain support its potential application for industrial hydrolysis of renewable biomass such as lignocelluloses.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus/enzimología , Geobacillus/aislamiento & purificación , Sedimentos Geológicos/microbiología , Glicósido Hidrolasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Geobacillus/clasificación , Geobacillus/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Minería , Datos de Secuencia Molecular , Filogenia , South Dakota
10.
Front Microbiol ; 4: 18, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23919089

RESUMEN

Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the phylum Firmicutes belonging to genera Bacillus and Clostridium. Batch fermentation studies demonstrated that isolates had the ability to ferment glucose, xylose, or glycerol to industrially valuable products such as ethanol and 1,3-propanediol (PDO). Ethanol was detected as the major fermentation end product in glucose-fermenting cultures at pH 10 with yields of 0.205-0.304 g of ethanol/g of glucose. While a xylose-fermenting strain yielded 0.189 g of ethanol/g of xylose and 0.585 g of acetic acid/g of xylose at the end of fermentation. At pH 7, glycerol-fermenting isolates produced PDO (0.323-0.458 g of PDO/g of glycerol) and ethanol (0.284-0.350 g of ethanol/g of glycerol) as major end products while acetic acid and succinic acid were identified as minor by-products in fermentation broths. These results suggest that the deep biosphere of the former Homestake gold mine harbors bacterial strains which could be used in bio-based production of ethanol and PDO.

11.
Bioresour Technol ; 143: 322-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23811065

RESUMEN

A novel Clostridium tyrobutyricum strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L(-1) butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH), corn stover (CSH), rice hull (RHH), and switchgrass (SGH). Results indicated that 50% WSH with a Clostridia medium (Ct) produced the most butyric acid (8.06 g L(-1), 0.46 g/g glucose), followed by 50% SGH with Ct (6.01 g L(-1), 0.44 g/g glucose), however, 50% CSH Ct showed growth inhibition. RPT-4213 was then used in pH-controlled bioreactor fermentations using 60% WSH and SGH, with a dilute (0.5×) Ct medium, resulting 9.87 g L(-1) butyric acid in WSH (yield 0.44 g/g) and 7.05 g L(-1) butyric acid in SGH (yield 0.42 g/g). The titer and productivity could be improved through process engineering.


Asunto(s)
Biomasa , Clostridium/metabolismo , Fermentación , Lignina/metabolismo , Anaerobiosis
14.
J Lab Autom ; 18(4): 276-90, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23543482

RESUMEN

The yeast Kluyveromyces marxianus is a potential microbial catalyst for fuel ethanol production from a wide range of biomass substrates. To improve its growth and ethanol yield at elevated temperature under microaerophilic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C using automated protocols on a robotic platform for picking and spreading irradiated cultures and for processing the resulting plates. The plates were incubated under anaerobic conditions on xylose or glucose for 5 mo at 46 °C. Two K. marxianus mutant strains (designated 7-1 and 8-1) survived and were isolated from the glucose plates. Both mutant strains, but not wild type, grew aerobically on glucose at 47 °C. All strains grew anaerobically at 46 °C on glucose, galactose, galacturonic acid, and pectin; however, only 7-1 grew anaerobically on xylose at 46 °C. Saccharomyces cerevisiae NRRL Y-2403 did not grow at 46 °C on any of these substrates. With glucose as a carbon source, ethanol yield after 3 d at 46 °C was higher for 8-1 than for wild type (0.51 and 0.43 g ethanol/g glucose, respectively). With galacturonic acid as a carbon source, the ethanol yield after 7 d at 46 °C was higher for 7-1 than for wild type (0.48 and 0.34 g ethanol/g galacturonic acid, respectively). These mutant strains have potential application in fuel ethanol production at elevated temperature from sugar constituents of starch, sucrose, pectin, and cellulosic biomass.


Asunto(s)
Fuentes Generadoras de Energía , Etanol/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Técnicas Analíticas Microfluídicas , Mutagénesis Sitio-Dirigida/métodos , Aerobiosis , Anaerobiosis , Automatización de Laboratorios , Biotecnología/métodos , Glucosa/metabolismo , Humanos , Kluyveromyces/crecimiento & desarrollo , Robótica/tendencias , Selección Genética , Temperatura , Rayos Ultravioleta
15.
Biotechnol Biofuels ; 6(1): 20, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23390890

RESUMEN

BACKGROUND: Reduced yields of ethanol due to bacterial contamination in fermentation cultures weaken the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predominant. Bacteriophage lytic enzymes are peptidoglycan hydrolases that can degrade the Gram positive cell wall when exposed externally and provide a novel source of antimicrobials that are highly refractory to resistance development. RESULTS: The streptococcal phage LambdaSa2 (λSa2) endolysin demonstrated strong lytic activity towards 17 of 22 strains of lactobacilli, staphylococci or streptococci and maintained an optimal specific activity at pH 5.5 and in the presence of ≤ 5% ethanol (fermentation conditions) toward L. fermentum. Lactobacillus bacteriophage endolysins LysA, LysA2 and LysgaY showed exolytic activity towards 60% of the lactobacilli tested including four L. fermentum isolates from fuel ethanol fermentations. In turbidity reduction assays LysA was able to reduce optical density >75% for 50% of the sensitive strains and >50% for the remaining strains. LysA2 and LysgaY were only able to decrease cellular turbidity by <50%. Optimal specific activities were achieved for LysA, LysA2, and LysgaY at pH 5.5. The presence of ethanol (≤5%) did not reduce the lytic activity. Lysins were able to reduce both L. fermentum (BR0315-1) (λSa2 endolysin) and L. reuteri (B-14171) (LysA) contaminants in mock fermentations of corn fiber hydrolysates. CONCLUSION: Bacteriophage lytic enzymes are strong candidates for application as antimicrobials to control lactic acid bacterial contamination in fuel ethanol fermentations.

16.
Environ Sci Technol ; 47(2): 661-77, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23227929

RESUMEN

Pharmaceuticals have emerged as a major group of environmental contaminants over the past decade but relatively little is known about their occurrence in freshwaters compared to other pollutants. We present a global-scale analysis of the presence of 203 pharmaceuticals across 41 countries and show that contamination is extensive due to widespread consumption and subsequent disposal to rivers. There are clear regional biases in current understanding with little work outside North America, Europe, and China, and no work within Africa. Within individual countries, research is biased around a small number of populated provinces/states and the majority of research effort has focused upon just 14 compounds. Most research has adopted sampling techniques that are unlikely to provide reliable and representative data. This analysis highlights locations where concentrations of antibiotics, cardiovascular drugs, painkillers, contrast media, and antiepileptic drugs have been recorded well above thresholds known to cause toxic effects in aquatic biota. Studies of pharmaceutical occurrence and effects need to be seen as a global research priority due to increasing consumption, particularly among societies with aging populations. Researchers in all fields of environmental management need to work together more effectively to identify high risk compounds, improve the reliability and coverage of future monitoring studies, and develop new mitigation measures.


Asunto(s)
Monitoreo del Ambiente/métodos , Preparaciones Farmacéuticas/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis
17.
J Lab Autom ; 18(6): 423-424, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28071185
18.
J Lab Autom ; 17(6): 417-24, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22786982

RESUMEN

We evaluated fermentation capabilities of five strains of Scheffersomyces stipitis (WT-2-1, WT-1-11, 14-2-6, 22-1-1, and 22-1-12) that had been produced by UV-C mutagenesis and selection for improved xylose fermentation to ethanol using an integrated automated robotic work cell. They were incubated under both facultative and anaerobic conditions to evaluate ethanol production on glucose, xylose, cellobiose, and a combination of all three sugars. The medium contained 50 g/L total sugar and 5 g/L yeast extract. The strains performed significantly better under facultative compared with anaerobic conditions. As expected, glucose was the most readily fermented sugar with ~100% fermentation efficiency (FE) under facultative conditions but only 5% to 16% FE anaerobically. Xylose utilization was 20% to 40% FE under facultative conditions but 9% to 25% FE anaerobically. Cellobiose was the least fermented sugar, at 18% to 27% FE facultatively and 8% to 11% anaerobically. Similar trends occurred in the sugar mixture. Under facultative conditions, strain 22-1-12 produced 19.6 g/L ethanol on glucose, but strain 14-2-6 performed best on xylose (4.5 g/L ethanol) and the sugar combination (8.0 g/L ethanol). Ethanol titers from glucose under anaerobic conditions were again highest with strain 22-1-12, but none of the strains produced ethanol from xylose. Future trials will evaluate nutrient addition to boost microaerophilic xylose fermentation.


Asunto(s)
Etanol/metabolismo , Ingeniería Metabólica/métodos , Mutagénesis , Saccharomycetales/metabolismo , Saccharomycetales/efectos de la radiación , Rayos Ultravioleta , Aerobiosis , Anaerobiosis , Automatización de Laboratorios/métodos , Celobiosa/metabolismo , Medios de Cultivo/química , Fermentación , Glucosa/metabolismo , Tamizaje Masivo/métodos , Saccharomycetales/genética , Xilosa/metabolismo
19.
J Biotechnol ; 161(3): 181-9, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-22789480

RESUMEN

Microbiologically induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has shown its potential in remediation of a wide range of structural damages including concrete cracks. In this study, genetically engineered microorganisms, capable of producing extracellular polymeric substances (EPSs) as well as inducing MICCP, were developed based on the assumption that the complex of inorganic CaCO(3) and organic EPS would provide a stronger matrix than MICCP alone as biosealant. In order to develop a recombinant biosealant microorganism, the entire Sporosarcina pasteurii urease gene sequences including ureA, ureB, ureC, ureD, ureE, ureF, and ureG from plasmid pBU11 were sub-cloned into the shuttle vector, pUCP18. The newly constructed plasmid, pUBU1, was transformed into two Pseudomonas aeruginosa strains, 8821 and PAO1, to develop recombinants capable of inducing calcite precipitation in addition to their own ability to produce EPS. Nickel-dependent urease activities were expressed from the recombinant P. aeruginosa 8821 (pUBU1) and P. aeruginosa PAO1 (pUBU1), at 99.4% and 60.9% of the S. pasteurii urease activity, respectively, in a medium containing 2mM NiCl(2). No urease activities were detected from the wild type P. aeruginosa 8821 and P. aeruginosa PAO1 under the same growth conditions. Recombinant Pseudomonas strains induced CaCO(3) precipitation at a comparable rate as S. pasteurii and scanning electron microscopy evidenced the complex of CaCO(3) crystals and EPS layers surrounding the cells. The engineered strains produced in this study are expected to serve as a valuable reference to future biosealants that could be applied in the environment. However, the pathogenic potential of P. aeruginosa, used here only as a model system to show the proof of principle, prevents the use of this recombinant organism as a biosealant. In practical applications, other recombinant organisms should be used.


Asunto(s)
Adhesivos/metabolismo , Biopolímeros/biosíntesis , Ingeniería Genética/métodos , Compuestos Inorgánicos/metabolismo , Compuestos Orgánicos/metabolismo , Pseudomonas aeruginosa/genética , Alginatos , Carbonato de Calcio/química , Precipitación Química/efectos de los fármacos , Cristalización , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/genética , Ácido Glucurónico/biosíntesis , Ácidos Hexurónicos , Níquel/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/ultraestructura , Recombinación Genética/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría por Rayos X , Sporosarcina/enzimología , Sporosarcina/genética , Ureasa/genética
20.
J Biotechnol ; 159(1-2): 69-77, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22342374

RESUMEN

A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western blot analysis detected five truncated CALB variants, suggesting multiple translation starts from the six in-frame ATG codons. The longest open reading frame, which corresponds to amino acids 35-317 of the mature lipase, appeared to be expressed in the greatest amount. The truncated CALB was immobilized on Sepabeads® EC-EP resin and used to produce ethyl and butyl esters from crude corn oil and refined soybean oil. The yield of ethyl esters was 4-fold greater from corn oil than from soybean oil and was 36% and 50% higher, respectively, when compared to a commercially available lipase resin (Novozym 435) using the same substrates. A 5:1 (v/v) ratio of ethanol to corn oil produced 3.7-fold and 8.4-fold greater yields than ratios of 15:1 and 30:1, respectively. With corn oil, butyl ester production was 56% higher than ethyl ester production. Addition of an ionic catalytic resin step prior to the CALB resin increased yields of ethyl esters from corn oil by 53% compared to CALB resin followed by ionic resin. The results suggest resin-bound truncated CALB has potential application in biodiesel production using biocatalysts.


Asunto(s)
1-Butanol/metabolismo , Enzimas Inmovilizadas/metabolismo , Etanol/metabolismo , Ácidos Grasos/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Proteínas Recombinantes/metabolismo , 1-Butanol/química , Secuencia de Aminoácidos , Secuencia de Bases , Reactores Biológicos , Aceite de Maíz/química , Aceite de Maíz/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Esterificación , Etanol/química , Ácidos Grasos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Lipasa/química , Lipasa/genética , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Resinas Sintéticas , Saccharomyces cerevisiae/genética , Aceite de Soja/química , Aceite de Soja/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...