Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20313, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985784

RESUMEN

Light exerts powerful and pervasive effects on physiology and behaviour. These effects can be indirect, through clock synchronization and phase adjustment of circadian rhythms, or direct, independent of the circadian process. Exposure to light at inappropriate times, as commonly experienced in today's society, leads to increased prevalence of circadian, sleep and mood disorders as well as cognitive impairments. In mice, exposure to an ultradian 3.5 h light/3.5 h dark cycle (T7) for several days has been shown to impair behaviour through direct, non-circadian, photic effects, a claim we challenge here. We first confirmed that T7 cycle induces a lengthening of the circadian period resulting in a day by day phase-delay of both activity and sleep rhythms. Spatial novelty preference test performed at different circadian time points in mice housed under T7 cycle demonstrated that cognitive deficit was restrained to the subjective night. Mice under the same condition also showed a modification of stress-induced despair-like behaviour in the forced swim test. Therefore, our data demonstrate that ultradian light cycles cause time-of-day-dependent alteration of cognition and mood through clock period lengthening delaying circadian sleep phase, and not through a direct photic influence. These results are of critical importance for the clinical applications of light therapy in the medical field and for today's society to establish lighting recommendations for shift work, schools, hospitals and homes.


Asunto(s)
Ritmo Circadiano , Fotoperiodo , Ratones , Animales , Ritmo Circadiano/fisiología , Sueño , Cognición , Afecto
2.
Chronobiol Int ; 40(2): 123-131, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36519316

RESUMEN

Dim light melatonin onset (DLMO) is considered the most reliable circadian phase marker in humans. However, the methods to calculate it are diverse, which limits the comparability between studies. Given the key role of DLMO to diagnose circadian rhythm sleep-wake disorders and determine the optimal timing of chronotherapies, the establishment of clear and validated guidelines on the methodology to assess DLMO is very important. We performed a repeatability study (n = 31) and an agreement study (n = 62) in healthy young adults with hourly blood samples collected under dim light conditions (<8 lux) during a chronobiological protocol. We assessed the repeatability of DLMO with three different methods (fixed threshold, dynamic threshold and hockey stick) across two nights and assessed agreement of each method with the mean visual estimation made by four chronobiologists. Analyses included Bland-Altman diagrams, intraclass correlation coefficients and equivalence tests. The repeatability of the four methods across two nights ranged from good to perfect. The agreement study highlighted that the hockey stick showed equivalent or superior performance (ICC: 0.95, mean difference with visual estimation: 5 min) in healthy subjects compared to the dynamic and fixed thresholds. Thanks to its objective nature, the hockey stick method may provide better estimates than the mean of the visual estimations of several raters. These findings suggest that the hockey stick method provides the most reliable estimate of DLMO within the tested methods and should be considered for use in future studies.


Asunto(s)
Melatonina , Trastornos del Sueño del Ritmo Circadiano , Adulto Joven , Humanos , Melatonina/análisis , Ritmo Circadiano , Luz , Saliva/química , Trastornos del Sueño del Ritmo Circadiano/diagnóstico , Sueño
3.
Sci Rep ; 12(1): 9018, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637236

RESUMEN

Idiopathic hypersomnia (IH), characterized by an excessive day-time sleepiness, a prolonged total sleep time on 24 h and/or a reduced sleep latency, affects 1 in 2000 individuals from the general population. However, IH remains underdiagnosed and inaccurately treated despite colossal social, professional and personal impacts. The pathogenesis of IH is poorly known, but recent works have suggested possible alterations of phototransduction. In this context, to identify biomarkers of IH, we studied the Post-Illumination Pupil Response (PIPR) using a specific pupillometry protocol reflecting the melanopsin-mediated pupil response in IH patients with prolonged total sleep time (TST > 660 min) and in healthy subjects. Twenty-eight patients with IH (women 86%, 25.4 year-old ± 4.9) and 29 controls (women 52%, 27.1 year-old ± 3.9) were included. After correction on baseline pupil diameter, the PIPR was compared between groups and correlated to sociodemographic and sleep parameters. We found that patients with IH had a lower relative PIPR compared to controls (32.6 ± 9.9% vs 38.5 ± 10.2%, p = 0.037) suggesting a reduced melanopsin response. In addition, the PIPR was not correlated to age, chronotype, TST, nor depressive symptoms. The melanopsin-specific PIPR may be an innovative trait marker of IH and the pupillometry might be a promising tool to better characterize hypersomnia.


Asunto(s)
Hipersomnia Idiopática , Pupila , Adulto , Femenino , Humanos , Pupila/fisiología , Reflejo Pupilar/fisiología , Opsinas de Bastones , Sueño/fisiología
4.
Clocks Sleep ; 4(2): 208-218, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35466270

RESUMEN

Ultradian light-dark cycles in rodents are a precious tool to study the direct effects of repeated light exposures on sleep, in order to better understand the underlying mechanisms. This study aims to precisely evaluate the effects of light and dark exposures, according to circadian time, on sleep and waking distribution and quality, and to determine if these effects depend on the duration of light and dark pulses. To do this, mice were exposed to 24 h-long ultradian light-dark cycles with different durations of pulses: T2 cycle (1 h of light/1 h of dark) and T7 cycle (3.5 h of light/3.5 h of dark). Exposure to light not only promotes NREM and REM sleep and inhibits wake, but also drastically alters alertness and modifies sleep depth. These effects are modulated by circadian time, appearing especially during early subjective night, and their kinetics is highly dependent on the duration of pulses, suggesting that in the case of pulses of longer duration, the homeostatic process could overtake light direct influence for shaping sleep and waking distribution.

5.
Sci Rep ; 9(1): 18073, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792259

RESUMEN

Sleep deprivation, in the context of shift work, is an increasing major public health issue. We aimed to determine whether early light administration can counteract sleep deprivation effects, and to compare LED-glasses with a traditional light therapy box. This cross-over design study included 18 individuals exposed to light therapy for 30 minutes at 5 am after one night of complete sleep deprivation, to mimic the night shift condition. Individuals were randomly exposed to 10,000 Lux light box, 2,000 Lux LED blue-enriched glasses, and control (ambient dim-light at 8 lux). Alertness, cognition and mood were assessed throughout the night and following morning. Five women and 13 men (mean 24.78 year old) presented with a progressive and increasing alteration of alertness, cognition, and mood during each sleep deprivation. A rebound was observed at 8 am resulting from the circadian drive overriding cumulative sleep homeostatic effects. Morning light significantly improved sleepiness and sustained attention from 5 to 7 am. These effects were comparable between devices and significantly different from control. Both devices were overall well and similarly tolerated. Early morning light therapy in the condition of sleep loss may have broad practical applications to improve sleepiness, sustained attention and subsequent risk of accidents.


Asunto(s)
Ritmo Circadiano/fisiología , Fototerapia/instrumentación , Privación de Sueño/terapia , Tolerancia al Trabajo Programado/fisiología , Adulto , Afecto/fisiología , Atención/fisiología , Cognición/fisiología , Estudios Cruzados , Anteojos , Femenino , Humanos , Masculino , Fototerapia/métodos , Privación de Sueño/diagnóstico , Privación de Sueño/fisiopatología , Resultado del Tratamiento , Vigilia/fisiología , Adulto Joven
6.
Sleep Med ; 30: 136-138, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28215236

RESUMEN

OBJECTIVE: The pathophysiology of restless legs syndrome (RLS) involves a dopaminergic dysregulation that remains poorly understood, with controversial data from the literature. Stroke-related RLS is a rare condition that involves primarily the basal ganglia, the paramedian pons, and the thalamus. Given these elements, we studied dopaminergic metabolism in patients with RLS secondary to lenticulostriate infarction using structural and nuclear imaging in the striatum ipsilateral to the infarction area, as compared to the contralateral side. We hypothesized that dopaminergic metabolism would be impaired in the striatum ipsilateral to stroke. METHODS: In this observational case-control study, we aimed to prospectively include patients with RLS secondary to lenticulo-striate infarction, for analyses of dopamine dysfunction ipsilateral to stroke as compared to the contralateral striatum and to a control population. Four patients fulfilled inclusion criteria with either de novo RLS or major exacerbation of RLS existing prior to stroke, and all four patients were included. Structural imaging was performed using brain magnetic resonance imaging, and the stroke-induced metabolic modifications were assessed by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). Dopamine reuptake via DAT was explored using 123I-FP-CIT SPECT. PET with 18F-FDOPA was used to evaluate the functional integrity of the presynaptic dopaminergic synthesis. RESULTS: The only structure damaged in all patients was the body of the caudate nucleus, right-sided for three and left-sided for one, as illustrated by magnetic resonance imaging. 18F-FDG PET showed a hypometabolism in the infarcted area, the ipsilateral thalamus, and the contralateral cerebellum. All patients displayed, in the ipsilateral putamen, increased dopaminergic tone. CONCLUSION: The present findings suggest that increased dopaminergic tone in the striatum may participate in the pathogenesis of RLS. These observations should encourage further research on RLS symptomatic with well-defined lesions as a promising way to further improve our understanding of its pathophysiology.


Asunto(s)
Enfermedad Cerebrovascular de los Ganglios Basales/complicaciones , Dopamina/metabolismo , Síndrome de las Piernas Inquietas/etiología , Accidente Cerebrovascular/complicaciones , Anciano , Enfermedad Cerebrovascular de los Ganglios Basales/metabolismo , Enfermedad Cerebrovascular de los Ganglios Basales/fisiopatología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Síndrome de las Piernas Inquietas/metabolismo , Síndrome de las Piernas Inquietas/fisiopatología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...