Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 7: 1761, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27933080

RESUMEN

Arabidopsis thaliana maintains a complex metabolism for the production of secondary or specialized metabolites. Such metabolites include volatile and semivolatile terpenes, which have been associated with direct and indirect defensive activities in flowers and leaves. In comparison, the structural diversity and function of terpenes in Arabidopsis roots has remained largely unexplored despite a substantial number of root-expressed genes in the Arabidopsis terpene synthase (TPS) gene family. We show that five root-expressed TPSs of an expanded subfamily-a type clade in the Arabidopsis TPS family function as class I diterpene synthases that predominantly convert geranylgeranyl diphosphate (GGPP) to different semi-volatile diterpene products, which are in part detectable at low levels in the ecotypes Columbia (Col) and Cape Verde Island (Cvi). The enzyme TPS20 produces a macrocyclic dolabellane diterpene alcohol and a dolabellane-related diterpene olefin named dolathaliatriene with a so far unknown C6-C11 bicyclic scaffold besides several minor olefin products. The TPS20 compounds occur in all tissues of Cvi but are absent in the Col ecotype because of deletion and substitution mutations in the Col TPS20 sequence. The primary TPS20 diterpene products retard the growth of the root rot pathogen Pythium irregulare but only at concentrations exceeding those in planta. Together, our results demonstrate that divergence and pseudogenization in the Arabidopsis TPS gene family allow for structural plasticity in diterpene profiles of above- and belowground tissues.

2.
Plant J ; 83(6): 1046-58, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26234706

RESUMEN

Plant roots secrete a significant portion of their assimilated carbon into the rhizosphere. The putative sugar transporter SWEET2 is highly expressed in Arabidopsis roots. Expression patterns of SWEET2-ß-glucuronidase fusions confirmed that SWEET2 accumulates highly in root cells and thus may contribute to sugar secretion, specifically from epidermal cells of the root apex. SWEET2-green fluorescent protein fusions localized to the tonoplast, which engulfs the major sugar storage compartment. Functional analysis of SWEET2 activity in yeast showed low uptake activity for the glucose analog 2-deoxyglucose, consistent with a role in the transport of glucose across the tonoplast. Loss-of-function sweet2 mutants showed reduced tolerance to excess glucose, lower glucose accumulation in leaves, and 15-25% higher glucose-derived carbon efflux from roots, suggesting that SWEET2 has a role in preventing the loss of sugar from root tissue. SWEET2 root expression was induced more than 10-fold during Pythium infection. Importantly, sweet2 mutants were more susceptible to the oomycete, showing impaired growth after infection. We propose that root-expressed vacuolar SWEET2 modulates sugar secretion, possibly by reducing the availability of glucose sequestered in the vacuole, thereby limiting carbon loss to the rhizosphere. Moreover, the reduced availability of sugar in the rhizosphere due to SWEET2 activity contributes to resistance to Pythium.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Transporte de Monosacáridos/metabolismo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Pythium/patogenicidad , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Secuestro de Carbono , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Proteínas de Transporte de Monosacáridos/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Vacuolas/metabolismo
3.
Plant Cell ; 27(3): 874-90, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25724638

RESUMEN

Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Vías Biosintéticas , Raíces de Plantas/metabolismo , Terpenos/metabolismo , Triterpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Arabidopsis/genética , Cromatografía de Gases , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Especificidad de Órganos , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Pythium/crecimiento & desarrollo , Pythium/fisiología , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Triterpenos/química
4.
Phytochemistry ; 72(13): 1635-46, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21334702

RESUMEN

Volatile organic compounds emitted by plants mediate a variety of interactions between plants and other organisms. The irregular acyclic homoterpenes, 4,8-dimethylnona-1,3,7-triene (DMNT) and 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), are among the most widespread volatiles produced by angiosperms with emissions from flowers and from vegetative tissues upon herbivore feeding. Special attention has been placed on the role of homoterpenes in attracting parasitoids and predators of herbivores and has sparked interest in engineering homoterpene formation to improve biological pest control. The biosynthesis of DMNT and TMTT proceeds in two enzymatic steps: the formation of the tertiary C15₋, and C20₋ alcohols, (E)-nerolidol and (E,E)-geranyl linalool, respectively, catalyzed by terpene synthases, and the subsequent oxidative degradation of both alcohols by a single cytochrome P450 monooxygenase (P450). In Arabidopsis thaliana, the herbivore-induced biosynthesis of TMTT is catalyzed by the concerted activities of the (E,E)-geranyllinalool synthase, AtGES, and CYP82G1, a P450 of the so far uncharacterized plant CYP82 family. TMTT formation is in part controlled at the level of AtGES expression. Co-expression of AtGES with CYP82G1 at wound sites allows for an efficient conversion of the alcohol intermediate. The identified homoterpene biosynthesis genes in Arabidopsis and related genes from other plant species provide tools to engineer homoterpene formation and to address questions of the regulation and specific activities of homoterpenes in plant-herbivore interactions.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/química , Aceites Volátiles/química , Enfermedades de las Plantas , Terpenos/metabolismo , Alquenos/metabolismo , Animales , Arabidopsis/enzimología , Resistencia a la Enfermedad , Expresión Génica , Insectos , Odorantes
5.
Plant J ; 66(4): 591-602, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21284755

RESUMEN

Aromatic L-amino acid decarboxylases (AADCs) are key enzymes operating at the interface between primary and secondary metabolism. The Arabidopsis thaliana genome contains two genes, At2g20340 and At4g28680, encoding pyridoxal 5'-phosphate-dependent AADCs with high homology to the recently identified Petunia hybrida phenylacetaldehyde synthase involved in floral scent production. The At4g28680 gene product was recently biochemically characterized as an L-tyrosine decarboxylase (AtTYDC), whereas the function of the other gene product remains unknown. The biochemical and functional characterization of the At2g20340 gene product revealed that it is an aromatic aldehyde synthase (AtAAS), which catalyzes the conversion of phenylalanine and 3,4-dihydroxy-L-phenylalanine to phenylacetaldehyde and dopaldehyde, respectively. AtAAS knock-down and transgenic AtAAS RNA interference (RNAi) lines show significant reduction in phenylacetaldehyde levels and an increase in phenylalanine, indicating that AtAAS is responsible for phenylacetaldehyde formation in planta. In A. thaliana ecotype Columbia (Col-0), AtAAS expression was highest in leaves, and was induced by methyl jasmonate treatment and wounding. Pieris rapae larvae feeding on Col-0 leaves resulted in increased phenylacetaldehyde emission, suggesting that the emitted aldehyde has a defensive activity against attacking herbivores. In the ecotypes Sei-0 and Di-G, which emit phenylacetaldehyde as a predominant flower volatile, the highest expression of AtAAS was found in flowers and RNAi AtAAS silencing led to a reduction of phenylacetaldehyde formation in this organ. In contrast to ecotype Col-0, no phenylacetaldehyde accumulation was observed in Sei-0 upon wounding, suggesting that AtAAS and subsequently phenylacetaldehyde contribute to pollinator attraction in this ecotype.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Hojas de la Planta/metabolismo , Tirosina Descarboxilasa/metabolismo , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Acetatos/farmacología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Descarboxilasas de Aminoácido-L-Aromático/genética , Ciclopentanos/farmacología , Conducta Alimentaria , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Insectos/patogenicidad , Larva/patogenicidad , Odorantes , Oxilipinas/farmacología , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/parasitología , Polen/genética , Polen/metabolismo , Interferencia de ARN , Homología de Secuencia de Aminoácido , Tirosina Descarboxilasa/genética , Compuestos Orgánicos Volátiles/metabolismo , Volatilización
6.
FEMS Microbiol Lett ; 238(2): 439-47, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15358431

RESUMEN

The effect of S-adenosylmethionine (SAM) on the production of various antibiotics was investigated to determine whether SAM-dependent methylation is required in biosynthetic pathways of antibiotics. Pristinamycin II(B) and granaticin do not require SAM-dependent methylation in their biosynthesis pathways, and production of these two antibiotics was increased about 2-fold when a low concentration (50 and 10 microM, respectively) of SAM was treated; in contrast, oleandomycin and avermectin B1a require SAM as a methyl donor in their biosynthesis, and production of these two antibiotics was increased 5-fold and 6-fold, depending on the SAM concentration within a certain range. We also found that the transcription of a pathway-specific regulator, gra-ORF9, was activated by exogenous SAM treatment. Production of oleandomycin and avermectin B1a was decreased by using a methyltransferase inhibitor, sinefungin, but the production levels of these antibiotics were restored to the control level by simultaneously adding SAM and sinefungin. Interestingly, we have found a similar stimulatory effect of S-adenosylhomocysteine (SAH), the methylation product of SAM, on antibiotic production in the four strains. Our results clearly demonstrate the widespread activation of antibiotic production using SAM in streptomycetes.


Asunto(s)
Antibacterianos/biosíntesis , Metilación/efectos de los fármacos , S-Adenosilmetionina/farmacología , Streptomycetaceae/efectos de los fármacos , Streptomycetaceae/metabolismo
7.
J Bacteriol ; 185(2): 592-600, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12511506

RESUMEN

S-Adenosyl-L-methionine synthetase (SAM-s) catalyzes the biosynthesis of SAM from ATP and L-methionine. Despite extensive research with many organisms, its role in Streptomyces sp. remains unclear. In the present study, the putative SAM-s gene was isolated from a spectinomycin producer, Streptomyces spectabilis. The purified protein from the transformed Escherichia coli with the isolated gene synthesized SAM from L-methionine and ATP in vitro, strongly indicating that the isolated gene indeed encoded the SAM-s protein. The overexpression of the SAM-s gene in Streptomyces lividans TK23 inhibited sporulation and aerial mycelium formation but enhanced the production of actinorhodin in both agar plates and liquid media. Surprisingly, the overexpressed SAM was proven by Northern analysis to increase the production of actinorhodin through the induction of actII-ORF4, a transcription activator of actinorhodin biosynthetic gene clusters. In addition, we found that a certain level of intracellular SAM is critical for the induction of antibiotic biosynthetic genes, since the control strain harboring only the plasmid DNA did not show any induction of actII-ORF4 until it reached a certain level of SAM in the cell. From these results, we concluded that the SAM plays important roles as an intracellular factor in both cellular differentiation and antibiotic production in Streptomyces sp.


Asunto(s)
Antraquinonas/metabolismo , Regulación Bacteriana de la Expresión Génica , Metionina Adenosiltransferasa/genética , S-Adenosilmetionina/metabolismo , Streptomyces/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Metionina Adenosiltransferasa/metabolismo , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , S-Adenosilmetionina/genética , Análisis de Secuencia de ADN , Esporas Bacterianas/fisiología , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...