Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Neurol ; 24(1): 31, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233770

RESUMEN

BACKGROUND: SCN8A-related disorders are a group of variable conditions caused by pathogenic variations in SCN8A. Online Mendelian Inheritance in Man (OMIM) terms them as developmental and epileptic encephalopathy 13, benign familial infantile seizures 5 or cognitive impairment with or without cerebellar ataxia. METHODS: In this study, we describe clinical and genetic results on eight individuals from six families with SCN8A pathogenic variants identified via exome sequencing. RESULTS: Clinical findings ranged from normal development with well-controlled epilepsy to significant developmental delay with treatment-resistant epilepsy. Three novel and three reported variants were observed in SCN8A. Electrophysiological analysis in transfected cells revealed a loss-of-function variant in Patient 4. CONCLUSIONS: This work expands the clinical and genotypic spectrum of SCN8A-related disorders and provides electrophysiological results on a novel loss-of-function SCN8A variant.


Asunto(s)
Disfunción Cognitiva , Epilepsia Generalizada , Epilepsia , Humanos , Epilepsia/genética , Genotipo , Fenotipo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética
2.
Res Sq ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609289

RESUMEN

Background: SCN8A-related disorders are a group of variable conditions caused by pathogenic variations in SCN8A. Online Mendelian Inheritance in Man (OMIM) terms them as developmental and epileptic encephalopathy 13, benign familial infantile seizures 5 or cognitive impairment with or without cerebellar ataxia. Methods: In this study, we describe clinical and genetic results on eight individuals from six families with SCN8A pathogenic variants identified via exome sequencing. Results: Clinical findings ranged from normal development with well-controlled epilepsy to significant developmental delay with treatment-resistant epilepsy. Three novel and three reported variants were observed in SCN8A. Electrophysiological analysis in transfected cells revealed a loss-of-function variant in Patient 4. Conclusions: This work expands the clinical and genotypic spectrum of SCN8A-related disorders and provides electrophysiological results on a novel loss-of-function SCN8A variant.

3.
Front Neurol ; 10: 434, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164858

RESUMEN

Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged $8,344 per patient in the Retrospective group, suggesting savings of $5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important.

4.
Alzheimers Res Ther ; 7(1): 25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25945128

RESUMEN

INTRODUCTION: Recent studies have shown that several strains of transgenic Alzheimer's disease (AD) mice overexpressing the amyloid precursor protein (APP) have cortical hyperexcitability, and their results have suggested that this aberrant network activity may be a mechanism by which amyloid-ß (Aß) causes more widespread neuronal dysfunction. Specific anticonvulsant therapy reverses memory impairments in various transgenic mouse strains, but it is not known whether reduction of epileptiform activity might serve as a surrogate marker of drug efficacy for memory improvement in AD mouse models. METHODS: Transgenic AD mice (APP/PS1 and 3xTg-AD) were chronically implanted with dural electroencephalography electrodes, and epileptiform activity was correlated with spatial memory function and transgene-specific pathology. The antiepileptic drugs ethosuximide and brivaracetam were tested for their ability to suppress epileptiform activity and to reverse memory impairments and synapse loss in APP/PS1 mice. RESULTS: We report that in two transgenic mouse models of AD (APP/PS1 and 3xTg-AD), the presence of spike-wave discharges (SWDs) correlated with impairments in spatial memory. Both ethosuximide and brivaracetam reduce mouse SWDs, but only brivaracetam reverses memory impairments in APP/PS1 mice. CONCLUSIONS: Our data confirm an intriguing therapeutic role of anticonvulsant drugs targeting synaptic vesicle protein 2A across AD mouse models. Chronic ethosuximide dosing did not reverse spatial memory impairments in APP/PS1 mice, despite reduction of SWDs. Our data indicate that SWDs are not a reliable surrogate marker of appropriate target engagement for reversal of memory dysfunction in APP/PS1 mice.

5.
Epilepsia ; 53(12): e204-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23106342

RESUMEN

Glucose transporter 1 (GLUT1) deficiency caused by mutations of SLC2A1 is an increasingly recognized cause of genetic generalized epilepsy. We previously reported that >10% (4 of 34) of a cohort with early onset absence epilepsy (EOAE) had GLUT1 deficiency. This study uses a new cohort of 55 patients with EOAE to confirm that finding. Patients with typical absence seizures beginning before 4 years of age were screened for solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) mutations or deletions. All had generalized spike-waves on electroencephalography (EEG). Those with tonic and/or atonic seizures were excluded. Mutations were found in 7 (13%) of 55 cases, including five missense mutations, an in-frame deletion leading to loss of a single amino acid, and a deletion spanning two exons. Over both studies, 11 (12%) of 89 probands with EOAE have GLUT1 deficiency. Given the major treatment and genetic counseling implications, this study confirms that SLC2A1 mutational analysis should be strongly considered in EOAE.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/complicaciones , Epilepsia Tipo Ausencia/etiología , Epilepsia Tipo Ausencia/genética , Mutación/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Evolución Molecular , Femenino , Transportador de Glucosa de Tipo 1/genética , Humanos , Masculino , Proteínas de Transporte de Monosacáridos/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...