Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Oncogenesis ; 12(1): 42, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573448

RESUMEN

Lethal prostate cancer (PCa) is characterized by the presence of metastases and development of resistance to therapies. Metastases form in a multi-step process enabled by dynamic cytoskeleton remodeling. An actin cytoskeleton regulating gene, CALD1, encodes a protein caldesmon (CaD). Its isoform, low-molecular-weight CaD (l-CaD), operates in non-muscle cells, supporting the function of filaments involved in force production and mechanosensing. Several factors, including glucocorticoid receptor (GR), have been identified as regulators of l-CaD in different cell types, but the regulation of l-CaD in PCa has not been defined. PCa develops resistance in response to therapeutic inhibition of androgen signaling by multiple strategies. Known strategies include androgen receptor (AR) alterations, modified steroid synthesis, and bypassing AR signaling, for example, by GR upregulation. Here, we report that in vitro downregulation of l-CaD promotes epithelial phenotype and reduces spheroid growth in 3D, which is reflected in vivo in reduced formation of metastases in zebrafish PCa xenografts. In accordance, CALD1 mRNA expression correlates with epithelial-to-mesenchymal transition (EMT) transcripts in PCa patients. We also show that CALD1 is highly co-expressed with GR in multiple PCa data sets, and GR activation upregulates l-CaD in vitro. Moreover, GR upregulation associates with increased l-CaD expression after the development of resistance to antiandrogen therapy in PCa xenograft mouse models. In summary, GR-regulated l-CaD plays a role in forming PCa metastases, being clinically relevant when antiandrogen resistance is attained by the means of bypassing AR signaling by GR upregulation.

2.
Mol Oncol ; 17(9): 1803-1820, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37458534

RESUMEN

Mitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3-kinase-protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clinical benefits for brain tumor patients. Here, we demonstrate that heterogeneous glioblastoma (GB) and medulloblastoma (MB) cell lines display only cytostatic responses to combined AKT and PDK targeting. Biochemically, the combined AKT and PDK inhibition resulted in the shutdown of both target pathways and priming to mitochondrial apoptosis but failed to induce apoptosis. In contrast, all tested brain tumor cell models were sensitive to a triplet therapy, in which AKT and PDK inhibition was combined with the pharmacological reactivation of protein phosphatase 2A (PP2A) by NZ-8-061 (also known as DT-061), DBK-1154, and DBK-1160. We also provide proof-of-principle evidence for in vivo efficacy in the intracranial GB and MB models by the brain-penetrant triplet therapy (AKTi + PDKi + PP2A reactivator). Mechanistically, PP2A reactivation converted the cytostatic AKTi + PDKi response to cytotoxic apoptosis, through PP2A-elicited shutdown of compensatory mitochondrial oxidative phosphorylation and by increased proton leakage. These results encourage the development of triple-strike strategies targeting mitochondrial metabolism to overcome therapy tolerance in brain tumors.


Asunto(s)
Neoplasias Encefálicas , Citostáticos , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Fosfatasa 2/metabolismo , Citostáticos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Apoptosis , Encéfalo , Línea Celular Tumoral
3.
Nat Commun ; 14(1): 1143, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854761

RESUMEN

The protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A. Upon direct binding to PP2A-B56α trimer, CIP2A displaces the PP2A-A subunit and thereby hijacks both the B56α, and the catalytic PP2Ac subunit to form a CIP2A-B56α-PP2Ac pseudotrimer. Further, CIP2A competes with B56α substrate binding by blocking the LxxIxE-motif substrate binding pocket on B56α. Relevant to oncogenic activity of CIP2A across human cancers, the N-terminal head domain-mediated interaction with B56α stabilizes CIP2A protein. Functionally, CRISPR/Cas9-mediated single amino acid mutagenesis of the head domain blunted MYC expression and MEK phosphorylation, and abrogated triple-negative breast cancer in vivo tumour growth. Collectively, we discover a unique multi-step hijack and mute protein complex regulation mechanism resulting in tumour suppressor PP2A-B56α inhibition. Further, the results unfold a structural determinant for the oncogenic activity of CIP2A, potentially facilitating therapeutic modulation of CIP2A in cancer and other diseases.


Asunto(s)
Carcinogénesis , Proteína Fosfatasa 2 , Procesamiento Proteico-Postraduccional , Neoplasias de la Mama Triple Negativas , Humanos , Aminoácidos , Carcinogénesis/genética , Carcinogénesis/metabolismo , Dominio Catalítico , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/ultraestructura , Neoplasias de la Mama Triple Negativas/metabolismo
4.
iScience ; 25(5): 104287, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35573198

RESUMEN

Antiandrogen treatment resistance is a major clinical concern in castration-resistant prostate cancer (CRPC) treatment. Using xenografts of VCaP cells we showed that growth of antiandrogen resistant CRPC tumors were characterized by a higher intratumor dihydrotestosterone (DHT) concentration than that of treatment responsive tumors. Furthermore, the slow tumor growth after adrenalectomy was associated with a low intratumor DHT concentration. Reactivation of androgen signaling in enzalutamide-resistant tumors was further shown by the expression of several androgen-dependent genes. The data indicate that intratumor DHT concentration and expression of several androgen-dependent genes in CRPC lesions is an indication of enzalutamide treatment resistance and an indication of the need for further androgen blockade. The presence of an androgen synthesis, independent of CYP17A1 activity, has been shown to exist in prostate cancer cells, and thus, novel androgen synthesis inhibitors are needed for the treatment of enzalutamide-resistant CRPC tumors that do not respond to abiraterone.

5.
J Steroid Biochem Mol Biol ; 192: 105115, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29438723

RESUMEN

We report the discovery of a novel nonsteroidal dual-action compound, ODM-204, that holds promise for treating patients with castration-resistant prostate cancer (CRPC), an advanced form of prostate cancer characterised by high androgen receptor (AR) expression and persistent activation of the AR signaling axis by residual tissue androgens. For ODM-204, has a dual mechanism of action. The compound is anticipated to efficiently dampen androgenic stimuli in the body by inhibiting CYP17A1, the prerequisite enzyme for the formation of dihydrotestosterone (DHT) and testosterone (T), and by blocking AR with high affinity and specificity. In our study, ODM-204 inhibited the proliferation of androgen-dependent VCaP and LNCaP cells in vitro and reduced significantly tumour growth in a murine VCaP xenograft model in vivo. Intriguingly, after a single oral dose of 10-30 mg/kg, ODM-204 dose-dependently inhibited adrenal and testicular steroid production in sexually mature male cynomolgus monkeys. Similar results were obtained in human chorionic gonadotropin-treated male rats. In rats, leuprolide acetate-mediated (LHRH agonist) suppression of the circulating testosterone levels and decrease in weights of androgen-sensitive organs was significantly and dose-dependently potentiated by the co-administration of ODM-204. ODM-204 was well tolerated in both rodents and primates. Based on our data, ODM-204 could provide an effective therapeutic option for men with CRPC.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/química , Esteroide 17-alfa-Hidroxilasa/antagonistas & inhibidores , Animales , Apoptosis , Proliferación Celular , Haplorrinos , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Ratas , Ratas Sprague-Dawley , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Am J Pathol ; 188(12): 2890-2901, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30273606

RESUMEN

The role of adrenal androgens as drivers for castration-resistant prostate cancer (CRPC) growth in humans is generally accepted; however, the value of preclinical mouse models of CRPC is debatable, because mouse adrenals do not produce steroids activating the androgen receptor. In this study, we confirmed the expression of enzymes essential for de novo synthesis of androgens in mouse adrenals, with high intratissue concentration of progesterone (P4) and moderate levels of androgens, such as androstenedione, testosterone, and dihydrotestosterone, in the adrenal glands of both intact and orchectomized (ORX) mice. ORX alone had no effect on serum P4 concentration, whereas orchectomized and adrenalectomized (ORX + ADX) resulted in a significant decrease in serum P4 and in a further reduction in the low levels of serum androgens (androstenedione, testosterone, and dihydrotestosterone), measured by mass spectrometry. In line with this, the serum prostate-specific antigen and growth of VCaP xenografts in mice after ORX + ADX were markedly reduced compared with ORX alone, and the growth difference was not abolished by a glucocorticoid treatment. Moreover, ORX + ADX altered the androgen-dependent gene expression in the tumors, similar to that recently shown for the enzalutamide treatment. These data indicate that in contrast to the current view, and similar to humans, mouse adrenals synthesize significant amounts of steroids that contribute to the androgen receptor-dependent growth of CRPC.


Asunto(s)
Glándulas Suprarrenales/patología , Adrenalectomía , Andrógenos/metabolismo , Modelos Animales de Enfermedad , Orquiectomía , Neoplasias de la Próstata Resistentes a la Castración/patología , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/cirugía , Animales , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/etiología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
7.
Am J Pathol ; 188(1): 216-228, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126837

RESUMEN

The development of castration-resistant prostate cancer (CRPC) is associated with the activation of intratumoral androgen biosynthesis and an increase in androgen receptor (AR) expression. We recently demonstrated that, similarly to the clinical CRPC, orthotopically grown castration-resistant VCaP (CR-VCaP) xenografts express high levels of AR and retain intratumoral androgen concentrations similar to tumors grown in intact mice. Herein, we show that antiandrogen treatment (enzalutamide or ARN-509) significantly reduced (10-fold, P < 0.01) intratumoral testosterone and dihydrotestosterone concentrations in the CR-VCaP tumors, indicating that the reduction in intratumoral androgens is a novel mechanism by which antiandrogens mediate their effects in CRPC. Antiandrogen treatment also altered the expression of multiple enzymes potentially involved in steroid metabolism. Identical to clinical CRPC, the expression levels of the full-length AR (twofold, P < 0.05) and the AR splice variants 1 (threefold, P < 0.05) and 7 (threefold, P < 0.01) were further increased in the antiandrogen-treated tumors. Nonsignificant effects were observed in the expression of certain classic androgen-regulated genes, such as TMPRSS2 and KLK3, despite the low levels of testosterone and dihydrotestosterone. However, other genes recently identified to be highly sensitive to androgen-regulated AR action, such as NOV and ST6GalNAc1, were markedly altered, which indicated reduced androgen action. Taken together, the data indicate that, besides blocking AR, antiandrogens modify androgen signaling in CR-VCaP xenografts at multiple levels.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Andrógenos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Animales , Benzamidas , Línea Celular Tumoral , Dihidrotestosterona/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Testosterona/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Sci Rep ; 6: 30723, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27480578

RESUMEN

Recent reports have called into question the reproducibility, validity and translatability of the preclinical animal studies due to limitations in their experimental design and statistical analysis. To this end, we implemented a matching-based modelling approach for optimal intervention group allocation, randomization and power calculations, which takes full account of the complex animal characteristics at baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized the confounding baseline variability, and resulted in animal allocations which were supported by RNA-seq profiling of the individual tumours. The matching information increased the statistical power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling approach and its open-source and web-based software implementations enable the researchers to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to accelerate the discovery of new therapeutic interventions.


Asunto(s)
Neoplasias de la Próstata/genética , Proyectos de Investigación , Animales , Humanos , Masculino , Ratones , Modelos Estadísticos , Trasplante de Neoplasias , Neoplasias de la Próstata/patología , Distribución Aleatoria , Reproducibilidad de los Resultados , Tamaño de la Muestra , Análisis de Secuencia de ARN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...