Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-21, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783748

RESUMEN

ABSTRACTSIn recent years, the demand for gluten-free (GF) bakery products has grown rapidly due to the remarkable rising number of celiac patients and the increasing health awareness of GF products. However, GF products generally suffer from defects such as poor sensorial level, low nutritional value, high prices and short shelf life. Sourdough is the important starter culture applied in bakery field, and it has been proven to be ideal for enhancing the overall quality of bakery products. This review aims to systematically reviewed the application of sourdough in GF bakery products and its improvement to GF bakery products in terms of texture, shelf life, nutrition and flavor. Its positive effects derive from the complex metabolic activities of sourdough microorganisms, such as acidification, proteolysis, production of exopolysaccharides (EPS), activation of endogenous enzymes, and production of antibacterial substances. Finally, researchers are encouraged to expand the use of sourdough in GF bakery products to increase the variety of GF products. And the technical and nutritional potential of sourdough should be developed more widely.

2.
Foods ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38790812

RESUMEN

Traditionally, tenderness has been assessed through shear force testing, which is inherently destructive, the accuracy is easily affected, and it results in considerable sample wastage. Although this technology has some drawbacks, it is still the most effective detection method currently available. In light of these drawbacks, non-destructive testing techniques have emerged as a preferred alternative, promising greater accuracy, efficiency, and convenience without compromising the integrity of the samples. This paper delves into applying five advanced non-destructive testing technologies in the realm of meat tenderness assessment. These include near-infrared spectroscopy, hyperspectral imaging, Raman spectroscopy, airflow optical fusion detection, and nuclear magnetic resonance detection. Each technology is scrutinized for its respective strengths and limitations, providing a comprehensive overview of their current utility and potential for future development. Moreover, the integration of these techniques with the latest advancements in artificial intelligence (AI) technology is explored. The fusion of AI with non-destructive testing offers a promising avenue for the development of more sophisticated, rapid, and intelligent systems for meat tenderness evaluation. This integration is anticipated to significantly enhance the efficiency and accuracy of the quality assessment in the meat industry, ensuring a higher standard of safety and nutritional value for consumers. The paper concludes with a set of technical recommendations to guide the future direction of non-destructive, AI-enhanced meat tenderness detection.

3.
J Food Sci ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795377

RESUMEN

This paper aimed to investigate the effects of ultrasound-assisted L-lysine treatment on meat quality and myofibrillar proteins (MPs) properties of pork longissimus dorsi during postmortem aging. The results revealed that the L-lysine (Lys) and/or ultrasound treatment significantly increased (p < 0.05) the water-holding capacity and tenderness of the pork during postmortem aging, while the ultrasound-assisted Lys treatment had the lowest cooking loss, pressurization loss, Warner-Bratzler shear force, and hardness. In addition, L-lysine and/or ultrasound treatment increased (p < 0.05) pH value, T21, and myofibrillar fragmentation index, while the ultrasound-assisted Lys treatment had the highest value. Meanwhile, the protein solubility was increased with Lys and/or ultrasound treatment during postmortem aging, and ultrasound-assisted Lys treatment had the highest solubility, reaching 88.19%, 92.98%, and 91.73% at 0, 1, and 3 days, respectively. The result of protein conformational characteristics showed that Lys and/or ultrasound treatment caused the unfolding of the α-helix structure, resulting in the exposure of more hydrophobic amino acids and buried sulfhydryl groups, ultimately enhancing MPs solubility. In summary, ultrasound-assisted Lys treatment altered the structure of MPs, resulting in the enhancement of the water-holding capacity and tenderness of the pork. PRACTICAL APPLICATION: This study showed that ultrasound-assisted L-lysine (Lys) treatment could enhance the water-holding capacity and tenderness of pork during postmortem aging. The results might provide a reference for the application of ultrasound-assisted Lys treatment on the improvement of pork meat quality. To facilitate practical applications in production, the development of medium and large-sized ultrasound equipment for conducting small-scale and pilot experiments is crucial for future research.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38500369

RESUMEN

Kidney-specific nanocarriers offer a targeted approach to enhance therapeutic efficacy and reduce off-target effects in renal treatments. The nanocarriers can achieve organ or cell specificity via passive targeting and active targeting mechanisms. Passive targeting capitalizes on the unique physiological traits of the kidney, with factors like particle size, charge, shape, and material properties enhancing organ specificity. Active targeting, on the other hand, achieves renal specificity through ligand-receptor interactions, modifying nanocarriers with molecules, peptides, or antibodies for receptor-mediated delivery. Nanotechnology-enabled therapy targets diseased kidney tissue by modulating podocytes and immune cells to reduce inflammation and enhance tissue repair, or by inhibiting myofibroblast differentiation to mitigate renal fibrosis. This review summarizes the current reports of the drug delivery systems that have been tested in vivo, identifies the nanocarriers that may preferentially accumulate in the kidney, and quantitatively compares the efficacy of various cargo-carrier combinations to outline optimal strategies and future research directions. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Enfermedades Renales , Nanopartículas , Humanos , Nanopartículas/uso terapéutico , Nanopartículas/química , Nanotecnología , Sistemas de Liberación de Medicamentos , Enfermedades Renales/tratamiento farmacológico , Ligandos , Portadores de Fármacos/química
5.
Small Methods ; 8(3): e2301368, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009516

RESUMEN

The presence of toxic organic pollutants in aquatic environments poses significant threats to human health and global ecosystems. Photocatalysis that enables in situ production and activation of H2 O2 presents a promising approach for pollutant removal; however, the processes of H2 O2 production and activation potentially compete for active sites and charge carriers on the photocatalyst surface, leading to limited catalytic performance. Herein, a hierarchical 2D/2D heterojunction nanosphere composed of ultrathin BiOBr and BiOI nanosheets (BiOBr/BiOI) is developed by a one-pot microwave-assisted synthesis to achieve in situ H2 O2 production and activation for efficient photocatalytic wastewater treatment. Various experimental and characterization results reveal that the BiOBr/BiOI heterojunction facilitates efficient electron transfer from BiOBr to BiOI, enabling the one-step two-electron O2 reduction for H2 O2 production. Moreover, the ultrathin BiOI provides abundant active sites for H2 O2 adsorption, promoting in situ H2 O2 activation for •O2 - generation. As a result, the BiOBr/BiOI hybrid exhibits excellent activity for pollutant degradation with an apparent rate constant of 0.141 min-1 , which is 3.8 and 47.3 times that of pristine BiOBr and BiOI, respectively. This work expands the range of the materials suitable for in situ H2 O2 production and activation, paving the way toward sustainable environmental remediation using solar energy.

6.
Molecules ; 28(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138456

RESUMEN

Apples are rich in vitamins and dietary fiber and are one of the essential fruits in people's daily diet. China has always been a big apple consumer, and with the improvement of people's life quality, nutrition, and health requirements, the demand for high-quality apples has increased year by year. Apple mold heart disease is one of the main diseases affecting apple quality. However, this disease cannot be easily detected from the surface, so it is difficult to detect mold heart disease. Therefore, this paper focuses on the analysis of seven non-destructive detection technologies, including near infrared spectroscopy technology, hyperspectral technology, Raman spectroscopy technology, electronic nose technology, acoustic technology, electrical technology, and magnetic technology, summarizes their application status in the detection of apple mold heart disease, and then analyzes their advantages and disadvantages. Combined with the current rapid development of artificial intelligence (AI) technology, this paper proposes the future development trends of using non-destructive technologies to detect apple mold heart disease. It is expected to provide basic theory and application references for the intelligent detection of apple mold heart disease.


Asunto(s)
Cardiopatías , Malus , Humanos , Inteligencia Artificial , Hongos , Cardiopatías/diagnóstico , Tecnología
7.
Adv Sci (Weinh) ; 10(28): e2303448, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37544890

RESUMEN

Piezo-assisted photocatalysis (namely, piezo-photocatalysis), which utilizes mechanical energy to modulate spatial and energy distribution of photogenerated charge carriers, presents a promising strategy for molecule activation and reactive oxygen species (ROS) generation toward applications such as environmental remediation. However, similarly to photocatalysis, piezo-photocatalysis also suffers from inferior charge separation and utilization efficiency. Herein, a Z-scheme heterojunction composed of single Ag atoms-anchored polymeric carbon nitride (Ag-PCN) and SnO2- x is developed for efficient charge carrier transfer/separation both within the catalyst and between the catalyst and surface oxygen molecules (O2 ). As revealed by charge dynamics analysis and theoretical simulations, the synergy between the single Ag atoms and the Z-scheme heterojunction initiates a cascade electron transfer from SnO2- x to Ag-PCN and then to O2 adsorbed on Ag. With ultrasound irradiation, the polarization field generated within the piezoelectric hybrid further accelerates charge transfer and regulates the O2 activation pathway. As a result, the Ag-PCN/SnO2- x catalyst efficiently activates O2 into ·O2 - , ·OH, and H2 O2 under co-excitation of visible light and ultrasound, which are consequently utilized to trigger aerobic degradation of refractory antibiotic pollutants. This work provides a promising strategy to maneuver charge transfer dynamics for efficient piezo-photocatalysis by integrating single-atom catalysts (SACs) with Z-scheme heterojunction.

8.
Plant Dis ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37227434

RESUMEN

Paspalum conjugatum (family Poaceae), locally known as Buffalo grass, is a perennial weed that can be found in rice field, residential lawn, and sod farm in Malaysia (Uddin et al. 2010; Hakim et al. 2013). In September 2022, Buffalo grass with rust symptoms and signs were collected from the lawn located in Universiti Malaysia Sabah in the province of Sabah (6°01'55.6"N, 116°07'15.7"E). The incidence was 90%. Yellow uredinia were observed primarily on the abaxial surface of the leaves. As the disease progressed, leaves were covered with coalescing pustules. Microscopic examination of pustules revealed the presence of urediniospores. Urediniospores were ellipsoid to obovoid in shape, contents in yellow, 16.4-28.8 x 14.0-22.4 µm and echinulate, with a prominent tonsure on most of the spores. A fine brush was used to collect yellow urediniospores, and genomic DNA was extracted based on Khoo et al. (2022a). The primers Rust28SF/LR5 (Vilgalys and Hester 1990; Aime et al. 2018) and CO3_F1/CO3_R1 (Vialle et al. 2009) were used to amplify partial 28S ribosomal RNA (28S) and cytochrome c oxidase III (COX3) gene fragments following the protocols of Khoo et al. (2022b). The sequences were deposited in GenBank under accession numbers OQ186624- OQ186626 (985/985 bp) (28S) and OQ200381-OQ200383 (556/556 bp) (COX3). They were 100% similar to Angiopsora paspalicola 28S (MW049243) and COX3 (MW036496) sequences. Phylogenetic analysis using maximum likelihood based on the combined 28S and COX3 sequences indicated that the isolate formed a supported clade to A. paspalicola. Koch's postulates were performed with spray inoculations of urediniospores suspended in water (106 spores/ml) on leaves of three healthy Buffalo grass leaves, while water was sprayed on three additional Buffalo grass leaves which served as control. The inoculated Buffalo grass were placed in the greenhouse. Symptoms and signs similar to those of the field collection occurred after 12 days post inoculation. No symptoms occurred on controls. To our knowledge, this is the first report of A. paspalicola causing leaf rust on P. conjugatum in Malaysia. Our findings expand the geographic range of A. paspalicola in Malaysia. Albeit P. conjugatum is a host of the pathogen, but the host range of the pathogen especially in Poaceae economic crops need to be studied. Weed management could be an effective way to eliminate inoculum sources of A. paspalicola.

9.
ACS Nano ; 17(5): 4193-4229, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36802513

RESUMEN

Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.

10.
J Control Release ; 354: 417-428, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36627025

RESUMEN

Fibrosis is an excessive accumulation of extracellular matrix (ECM) that may cause severe organ dysfunction. Nitric oxide (NO), a multifunctional gaseous signaling molecule, may inhibit fibrosis, and delivery of NO may serve as a potential antifibrotic strategy. However, major limitations in the application of NO to treat fibrotic diseases include its nonspecificity, short half-life and low availability in fibrotic tissue. Herein, we aimed to develop a stimuli-responsive drug carrier to deliver NO to halt kidney fibrosis. We manufactured a nanoparticle (NP) composed of pH-sensitive poly[2-(diisopropylamino)ethyl methacrylate (PDPA) polymers to encapsulate a NO donor, a dinitrosyl iron complex (DNIC; [Fe2(µ-SEt)2(NO)4]). The NPs were stable at physiological pH 7.4 but disintegrated at pH 4.0-6.0. The NPs showed significant cytotoxicity to cultured human myofibroblasts and were able to inhibit the activation of myofibroblasts, as indicated by a lower expression level of α-smooth muscle actin and the synthesis of a major ECM component, collagen I, in cultured human myofibroblasts. When given to mice treated with unilateral ureteral ligation/obstruction (UUO) to induce kidney fibrosis, these NPs remained in blood at a stable concentration for as long as 24 h and might enter the fibrotic kidneys to suppress myofibroblast activation and collagen I production, leading to a 70% reduction in the fibrotic area. In summary, our strategy to assemble a NO donor, the iron nitrosyl complex DNIC, into pH-responsive NPs proves effective in treating renal fibrosis and warrants further investigation for its therapeutic potential.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Ratones , Humanos , Animales , Riñón , Óxido Nítrico/metabolismo , Enfermedades Renales/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Colágeno Tipo I/metabolismo , Fibrosis , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL
11.
Meat Sci ; 196: 109046, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36442397

RESUMEN

The use of cold atmospheric plasma (CAP) is fast becoming an emerging curing technology in the meat industry. The aim of this study was to assess CAP-assisted curing of beef meat roasted by charcoal (CR) and superheated steam (SR) in terms of flavor quality and heterocyclic amines (HAs) using electronic nose, GC-MS and UPLC-MS-MS. The CAP-assisted curing increased redness value by 46% and 8% in SR and CR meat respectively. Although CAP-assisted curing had little influence on the odor profile of SR meat, it influenced the odor profile of CR meat. Lipid oxidation-derived off-flavors in CR meat were not significantly (P > 0.05) changed after CAP treatment. However, these off-flavors were significantly (P < 0.05) reduced in SR meat. In addition, CAP-assisted curing did not increase the HAs contents in SR meat. CAP-assisted curing of SR meat improved flavor and did not increase toxic risk of SR meat.


Asunto(s)
Gases em Plasma , Vapor , Animales , Bovinos , Odorantes , Carbón Orgánico , Cromatografía Liquida , Espectrometría de Masas en Tándem , Aminas , Carne
12.
Chinese Pharmacological Bulletin ; (12): 926-931, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013916

RESUMEN

Aim To observe the effects of microRNA-204/-211 deficiency on osteoarthritis(OA) induced by medial meniscus amputation (DMM) in mice. Methods 12 C57BL/6J wild-type (WT) mice were randomly divided into sham operation groups and DMM groups, namely WT-control group and WT + DMM group. And twelve microRNA-204/-211 gene knockout (miR-204/-211-dKO) mice were randomly divided into sham operation groups and DMM groups, namely dKO group, and dKO + DMM group. The pain sensitivity of mice was measured by the von Frey test before sacrificing. Three months after the operation, the mice were sacrificed. The knee joints and dorsal root ganglion (DRG) were taken for detection. The subchondral bone structure was detected by micro-CT. Sections of knee joint tissue were stained with toluidine blue, PCNA, type Ⅱ collagen and immunohistochemistry. DRG tissues were detected for related pain factors and inflammatory factors by RT-qPCR. Results Compared with the mice in the WT-Control group, mice in the WT + DMM group showed typical OA symptoms such as osteophyte formation, subchondral osteosclerosis, and decreased pain thresholds. The expression of collagen Ⅱ in cartilage significantly decreased, while the expression of MMP13 significantly increased. The expression of inflammatory and pain-related factors in DRG significantly increased. At the same time, the OA phenotypes of mice in dKO + DMM were more obvious than that of mice in the WT + DMM group, indicating that miR-204/-211 deficiency aggravated the OA induced by DMM in mice. In particular, DMM did not cause synovial hyperplasia and synovial inflammation in WT mice, which could not completely represent the pathological characteristics of OA patients in clinical practice. However, miR-204/-211 deficiency significantly promoted synovial hyperplasia and synovial inflammation of knee joints in DMM mice. Conclusions After DMM operation, miR-204/-211 deficient mice showed not only typical OA phenotypes such as osteophyte formation, subchondral osteosclerosis, cartilage destruction and lower pain threshold, but also synovial hyperplasia and synovitis, which could better represent the pathological characteristics of clinical OA patients. MiR-204/-211 deficient mice with DMM can be used as a new OA model and an ideal animal model for screening anti-OA drugs.

13.
Food Res Int ; 162(Pt A): 111911, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461180

RESUMEN

This study investigated the formation of polycyclic aromatic hydrocarbons (PAHs) in a mutton intramuscular fat model system containing epicatechin under various reaction conditions using multivariate statistical analysis, and established the optimal equations for PAHs prediction. Results indicated that at 100-180 °C for 10-60 min, epicatechin inhibited the formation of naphthalene, acenaphthylene, phenanthrene, anthracene, benz[a]anthracene and benzo[g,h,i]perylene by 10-37 %, 11-32 %, 9-100 %, 27-56 %, 100 % and 6-18 %, respectively. Polynomial equation third-order model with R2 at 0.87-0.98 and R2 at 0.80-0.95 well fitted for the formation of PAHs under various temperatures and times, respectively. The correlation coefficients of calibration set (R2c) and validation set (R2v) were 0.92 and 0.81 for naphthalene, 0.84 and 0.84 for acenaphthylene, 0.99 and 0.98 for phenanthrene, 0.97 and 0.95 for anthracene, 0.91 and 0.80 for benzo[g,h,i]perylene, respectively, which suggested good mathematical models for the PAHs formation rules. These results provide theoretical support to develop technologies for PAHs real-time monitoring during roasted mutton processing.


Asunto(s)
Catequina , Perileno , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Naftalenos , Antracenos
14.
Plant Dis ; 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36541883

RESUMEN

Rice (Oryza sativa L.) has been farmed in Malaysia since ancient times and is one of the most important commercial crops (Ma'arup et al. 2020). Throughout January to August 2022, chlorotic spots with brown halos ranging 2 to 10 mm wide were found on upper leaves of rice variety Mahsuri in the vegetative stage with a severity and incidence of approximately 60% and 100%, respectively in Kampung Tagas, Sabah, Malaysian Borneo (06°09'41.8"N, 116°13'45.1"E). As the disease developed, the spots coalesced into larger chlorotic spots. Three leaf pieces (5 x 5 mm) were excised from lesion margins, surface sterilized based on Khoo et al. (2022a), before plating on water agar (WA) at 25°C. Purification of fungi was conducted on WA using hyphal tip isolation. When three pure cultures were obtained, the fungi were cultured on potato dextrose agar (PDA) and WA for 7 days in 12 h light and 12 h dark at 25°C for the macro- and micro-morphological characterization, respectively. The colonies of the three isolates on PDA were initially gray, later becoming dark. Conidia (n=30) were fusiform, smooth-walled, dark-brown, and melanized with three transverse septa, measuring 7.3 to 11.4 × 16.2 to 27.2 µm. The isolates were named Tagas01, Tagas02, Tagas03. Genomic DNA was extracted from fresh mycelia of the pathogens based on the extraction method described by Khoo et al. (2022b). The primers ITS1/ITS4 (White et al. 1990), GPD1/GPD2 (Berbee et al. 1991), and EF1-983F/EF1-2218R (Schochet al. 2009) were used to amplify the internal transcribed spacer (ITS) region of rDNA, partial fragments of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and translation elongation factor (EF-1α) region, respectively based on PCR conditions as described previously (Khoo et al. 2022a). The sequences were deposited in GenBank under accession numbers OP268402, OP271304, OP271305 (677/677 bp) (ITS), OP270699, OP270703, OP270704 (609/613 bp) (GAPDH), OP270700-OP270702 (928/930 bp) (EF-1α). They were 99.35-100% similar to the Curvularia lunata ITS (HF934911), GAPDH (LT715821), and Curvularia dactyloctenicola EF-1α (MF490858) type sequences. Although C. dactyloctenicolais related to C. lunata, the conidia of the former are much wider making them easier to differentiate (Marin-Felix et al. 2017). Phylogenetic analysis using maximum likelihood based on the combined ITS, GAPDH and EF-1α sequences indicated that the isolate formed a supported clade to C. lunata. The pathogens were identified as C. lunata based on morphological and molecular characterization. Koch's postulates were performed. Three replicate healthy rice at the vegetative stage were sprayed with a spore suspension of 1 × 106 spore/ml in distilled sterilized water, prepared from 1-week-old fungal culture, grown in the dark on WA. Three replicate rice plants were sprayed with distilled sterilized water as control. Plants were covered with transparent polyethylene bags to keep moisture, and kept in a greenhouse at ~27°C. Bags were removed after 4 days of incubation. Monitoring and incubation were performed in greenhouse based on Iftikhar et al. (2022). The pathogenicity test was also performed using isolate Tagas02 and Tagas03. All inoculated leaves developed symptoms as described after 6 days post-inoculation, whereas no symptoms occurred on controls. The experiments were repeated twice. The reisolated fungi were identical to the pathogen morphologically and molecularly, thus fulfilling Koch's postulates. C. lunata has been reported in Peninsular Malaysia (Lee et al. 2012). This is the first report of C. lunata causing leaf spot on Oryza sativa in Sabah, Malaysian Borneo. This illness not only reduces yields and lowers milling quality, but it may also be mistaken for rice blast, necessitating needless fungicide spraying.

15.
Plant Dis ; 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510434

RESUMEN

Basella alba is an evergreen perennial vine that grows as an edible leafy vegetable in Malaysia (Nordin et al. 2007). During January 2021, a cottony white hypha associated with aggregates of white to brown sclerotia and symptoms of damping-off were visualized on the stem base of B. alba at the soil surface in an isolated field (~0.03 ha) located in the district of Penampang, Sabah province, Malaysia (5°56'51.0"N 116°04'31.8"E). Yellowing and wilting of leaves, and defoliation were observed after four days of the development of damping-off. Survey was conducted on 100 plants which 30 were found infected. The disease severity (90%) on stems was estimated using IMAGEJ. Symptomatic stem tissues were surface sterilized with 75% of ethanol for 1 min, washed with 2% of sodium hypochlorite solution for 1 min, rinsed thrice with sterile distilled water, air dried and plated on potato dextrose agar (PDA). Plates were incubated for 7 days at 25°C in the dark. After 7 days, fungi were isolated; colony color was white and had a cottony appearance. On day 14, white to brown sclerotia 1.0 to 2.2 mm in diameter were produced. Hyaline septate hyphae with clamp connections and multiple nuclei were seen. Conidia and conidiophores were absent from the colony on PDA. Genomic DNA of fungi was extracted based on Khoo et al. (2022a and 2022b). PCR amplification (Khoo et al. 2022b) was performed using primer set ITS1/ITS4, EF983/EF2218 and LR0R/LR05 to amplify the internal transcribed spacer (ITS) region of rDNA, partial translation elongation factor 1 alpha (TEF-1α) gene and partial large subunit ribosomal RNA (LSU rRNA) gene, respectively (Vilgalys and Hester 1990; White et al. 1990; Carbone and Kohn, 1999; Rehner 2001). Phylogenetic analysis indicated that the isolates formed a supported clade to the related Athelia rolfsii sequences. The sequencing result (GenBank Accession Nos. OK465460, OP809607, OP857217) had a 99% identity over 625 bp, 941 bp, and 1,101 bp with the corresponding gene sequence of A. rolfsii (GenBank Accession Nos. MN622806, AY635773, MW322687) after analysis in BLASTn program. Pathogenicity test was performed based on Le (2011). Three 8-week-old B. alba plants cultivated on sterilized soil were inoculated with 5-mm mycelia plugs from 7-day-old culture. A plug was put on the upper soil surface layer 2 cm away from the base of the stem of B. alba plant before fully covered with a layer of sterilized soil. Plants that were inoculated with sterile PDA plugs served as the control treatment. Plastic bags were used to cover the plants after inoculation for 24 h before keeping them in a glasshouse under ambient conditions. Water-soaked and brown lesions were visualized on the stem base of all inoculated plants after four days of inoculation. Symptom of damping-off and leaf blight was observed after another 3 days. No symptoms developed on the mock controls. The pathogenicity test was repeated twice. Re-isolation was performed from the symptomatic tissues of inoculated plants and mock controls. The isolates reisolated from the symptomatic tissues were verified as A. rolfsii based on morphology and molecular characterization, thus fulfilling Koch's postulates. No pathogens were isolated from the mock controls. To our knowledge, this is the first report of A. rolfsii causing damping-off and leaf blight on B. alba in Malaysia, as well as worldwide. Our findings documented the wider geographical and host range of A. rolfsii and indicate its potential threat to B. alba production in Malaysia.

16.
Biochem Biophys Res Commun ; 636(Pt 2): 48-54, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36343490

RESUMEN

Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of the intestine with the pathogenesis to be largely unknown. We found that microRNA (miR)-10b knock-out mice displayed mild IBD symptoms, suggesting that miR-10b may be involved in the onset and development of IBD. This study focuses on elucidating the role of miR-10b in IBD. The colitis model was induced by feeding the mice with 2.5% dextran sodium sulfate (DSS), and the expression levels of miR-10b in colon tissue and blood samples were examined. The severity of colitis was assessed by disease activity index, colon length, histopathological damage, intestinal permeability and ELISA. Then, after transfection of Caco-2 cells with miR-10b mimic and inhibitor, qRT-PCR was used to detect the expression levels of intestinal barrier related genes in colon tissues and cells. miR-10b levels were significantly reduced in mice with DSS-induced acute colitis. Compared with wild-type (WT) mice, miR-10b knockout mice were more sensitive to DSS-induced colitis characterized by increased inflammatory cell infiltration and more severe disruption of colonic barrier function. In addition, by inhibiting miR-10b and thus increasing intestinal barrier gene expression in Caco-2 cells, we found that miR-10b suppressed inflammatory responses and enhanced intestinal barrier function both in vivo and in vitro. miR-10b inhibits the inflammatory response in DSS-induced acute colitis mice in vivo and enhances intestinal barrier function in vitro, suggesting that miR-10b plays a key role in the developmental process of IBD. Thus, miR-10b may be expected to be a new target for the treatment of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , MicroARNs , Animales , Humanos , Ratones , Células CACO-2 , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colon/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo
17.
Mar Drugs ; 20(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36286416

RESUMEN

Fucoxanthin is one of the light-harvesting pigments in brown microalgae, which is increasingly gaining attention due to its numerous health-promoting properties. Currently, the production of microalgal fucoxanthin is not yet feasible from an economic perspective. However, the cultivation of microalgae at favourable conditions holds great potential to increase the viability of this fucoxanthin source. Hence, this study aimed to review the fucoxanthin production of microalgae under different conditions systematically. A literature search was performed using the Web of Science, Scopus and PubMed databases. A total of 188 articles were downloaded and 28 articles were selected for the current review by two independent authors. Microalgae appeared to be a more reliable fucoxanthin source compared to macroalgae. Overall, a consensus fucoxanthin production condition was obtained and proposed: light intensity ranging from 10 to 100 µmol/m2/s could achieve a higher fucoxanthin content. However, the optimal light condition in producing fucoxanthin is species-specific. The current review serves as an antecedent by offering insights into the fucoxanthin-producing microalgae response to different culture factors via a systematic analysis. With the current findings and recommendations, the feasibility of producing fucoxanthin commercially could be enhanced and possibly achieve practical and sustainable fucoxanthin production.


Asunto(s)
Microalgas , Xantófilas , Luz
18.
Plant Dis ; 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939750

RESUMEN

Cinnamomum camphora (Lauraceae), commonly known as camphor tree, is widely grown as an ornamental and is used as a source of camphor in Malaysia. In June 2021, leaves of three camphor trees with anthracnose symptoms were collected from a park (6°02'00.8"N, 116°07'18.5"E) at the Universiti Malaysia Sabah in Sabah province. The average disease severity across diseased plants was about 60% with 30% incidence on 10 surveyed plants. The disease severity on disease area of 10 leaves from each three diseased plants was estimated using ImageJ software. The disease incidence was determined based on Sharma et al. (2017). Gray spots were observed primarily on the surface of the leaves. After a week, the spots coalesced into larger patches, and anthracnose developed. Small pieces (5 x 5 mm) of symptomatic leaf tissue from three camphor trees were excised from the margin between healthy and symptomatic tissue. The pieces were surface-sterilized with 75% ethanol for 1 minute, washed with 2% sodium hypochlorite solution for 1 minute, rinsed, and air dried before plating in three Petri dishes with Potato dextrose agar, and incubated for 7 days at 25°C in the dark. After 7 days, all the PDA plates had abundant gray-white fluffy hyphae. Mycelium was dark brown when observed from the underside of the plate. The isolates UMS02, UMS04 and UMS05 were characterized morphologically and molecularly. The conidia were one-celled, cylindrical, hyaline, and smooth, with blunt ends, and ranged in size from 13.9 to 16.3 x 3.8 to 6.1 µm (n = 20). Appressoria were round to irregular in shape and dark brown in color, with size ranging from 7.8 to 9.8 µm x 5.3 to 6.8 µm (n= 20). Genomic DNA was extracted from fresh mycelium of the isolates based on Khoo et al. (2022a). Amplification of the internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), chitin synthase (CHS-1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes of the isolate was performed using primer pairs ITS1/ITS4, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-354R, and GDF1/GDR1 (Weir et al. 2012). PCR products with positive amplicons were sent to Apical Scientific Sdn. Bhd. for sequencing. Sequences of the isolates were deposited in GenBank as OK448747, OM501094, OM501095 (ITS), OL953034, OM513908, OM513909 (CAL), OL953031, OM513910, OM513911 (ACT), OL953037, OM513912, OM513913 (CHS-1), and OL953040, OM513914, OM513915 (GAPDH). They were 100% identical to ITS (MN296082), CAL (MN525840), ACT (MW341257, MN525819), CHS-1 (MT210318), and GAPDH (MT682399, MN525882) sequences of Colletotrichum siamense. Phylogenetic analysis using maximum likelihood on the concatenated ITS, CAL, ACT, CHS-1 and GAPDH sequences indicated that the isolates formed a clade (82% bootstrap support) to C. siamense. Morphological and molecular characterization matched the description of C. siamense (Huang et al. 2022). Koch's postulates were performed by spraying a spore suspension (106 spores/ml) on leaves of three healthy two-month-old camphor trees, while water was sprayed on three additional camphor trees which served as control. The inoculated camphor trees were covered with plastics for 48 h at 25°C in the dark, and then placed in the greenhouse. Monitoring and incubation were performed based on Chai et al. (2017) and Iftikhar et al. (2022). Symptoms similar to those observed in the field occurred 8 days post-inoculation. No symptoms occurred on controls. The experiment was repeated two more times. C. siamense has been reported causing anthracnose on camphor tree in China (Liu et al. 2022), Citrus spp. in Mexico (Pérez-Mora et al. 2021), and Crinum asiaticum and eggplant in Malaysia (Khoo et al. 2022b, 2022c). To our knowledge, this is the first report of C. siamense causing anthracnose on C. camphora in Malaysia. Our findings expand the geographic range of C. siamense and indicate it could be a potential threat limiting the camphor production of C. camphora in Malaysia.

19.
Chem Asian J ; 17(19): e202200598, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35913049

RESUMEN

Bacterial cellulose, or microbial cellulose, had gained tremendous interest as a hydrogel material for biomedical purposes in the recent years. It has many intrinsic physiological properties like fibrous nature, ultrafine 3D nanostructure network, high water holding capacity, excellent mechanical properties, biocompatibility and biodegradability that allow for the use of such purposes, and the lacking properties can be easily supplemented or enhanced by modifications. In this review, some of the biomedical applications that uses bacterial cellulose are discussed. These include wound healing, drug delivery, tissue engineering and tumor cell and cancer therapy. In each section, different modifications of BC are showcased and examined on how they benefit the application. Finally, key takeaways on these modifications are also deliberated.


Asunto(s)
Celulosa , Ingeniería de Tejidos , Bacterias/química , Materiales Biocompatibles/química , Celulosa/química , Hidrogeles/química , Agua
20.
Plant Dis ; 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802010

RESUMEN

Bothriochloa ischaemum (family Poaceae) is a perennial weed that can be found in borders of agricultural fields, pastures and roadsides in Malaysia. B. ischaemum is an important phytoremediation species in copper tailings dams (Jia et al. 2020). In December 2021, chlorotic spots with brown halos were observed on leaf samples of B. ischaemum with an incidence of approximately 80% in Penampang, Sabah province (5°56'50.4"N, 116°04'32.8"E). On older leaves, the spots coalesced into larger chlorotic spots. Small pieces (5 x 5 mm) of infected leaves collected from three plants were excised, and then surface sterilized according to Khoo et al. (2022). The fungus was isolated (one isolate was obtained) and cultured on potato dextrose agar (PDA) at 25°C. After 3 days, the colony had cottony aerial mycelia with light purple concentric rings appearing on the underside of the colony. Chlamydospores were produced, either unicellular or multicellular. Conidia were unicellular, hyaline, oval, and were 3.7 to 5.1 x 1.8 to 2.6 µm (n=20). Pycnidia were spheroid, and were 66.4 to 115.3 x 43.1 to 87.4 µm (n=20). Genomic DNA was extracted from fresh mycelia of the fungus based on the extraction method described by Khoo et al. (2022). Amplification of the internal transcribed spacer (ITS) region and large subunit (LSU) of rDNA, and actin (ACT), tubulin (TUB) and RNA polymerase II second largest subunit (RPB2) genes was performed using ITS1/ITS4, LR0R/LR7, ACT512F/ACT783R, T10/Bt2b and RPB2-5F2/RPB2-7cR primers, respectively (O'Donnell and Cigelnik, 1997; Liu et al. 1999; Sung et al. 2007; Chen et al. 2021). The PCR products were sequenced at Apical Scientific Sdn. Bhd.. Sequences were deposited in GenBank as OM453926 (ITS), OM453925 (LSU), OM451236 (ACT), OM451237 (TUB) and OM863567 (RPB2). Sequences of our isolate had 100% homology to ITS of isolate UMS (OK626271) (507/507 bp), LSU of isolate UMS (OM238129) (1328/1328 bp), ACT of isolate CZ01 (MN956831) (275/275 bp), TUB of isolate BJ-F1 (MF987525) (556/556 bp) and RPB2 of isolate HYCX2 (MK836295) (596/596 bp) sequences. Phylogenetic analysis was performed using the maximum likelihood method based on the general time reversible model with a gamma distribution and invariant sites (GTR + G + I) generated from the combined ITS, TUB, LSU and RPB2 sequences, indicating that the isolates formed a supported clade to the related Epicoccum sorghinum type sequences. Morphological and molecular characterization matched the description of E. sorghinum (Li et al. 2020). Koch's postulates were performed by spray inoculation (106 spores/ml) on the leaves of three healthy B. ischaemum plants, using isolate BPL01, while sterilized water was sprayed on three additional B. ischaemum which served as the control. Symptoms similar to those occurred after 6 days post inoculation. No symptoms occurred on controls. The experiment was repeated two more times. The reisolated pathogen was morphologically and genetically identical to E. sorghinum. E. sorghinum was reported previously on Brassica parachinensis (Yu et al. 2019), Camellia sinensis (Bao et al. 2019), Myrica rubra (Li et al. 2020), Oryza sativa (Liu et al. 2020) and Zea mays (Chen et al. 2021) in China. To our knowledge, this is the first report of E. sorghinum causing leaf spot on B. ischaemum in Malaysia. Our findings expand the geographic range and host range of E. sorghinum in Malaysia. B. ischaemum which is a weed in agricultural fields is a host of the pathogen and therefore could be a potential threat to Brassica parachinensis, Camellia sinensis, Oryza sativa and Zea mays in Malaysia. Weed management could be an effective way to eliminate inoculum sources of E. sorghinum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...