Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2635, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149616

RESUMEN

Lacticaseibacillus paracasei is an economically important bacterial species, used in the food industry and as a probiotic. Here, we investigate the roles of N6-methyladenine (6mA) modification in L. paracasei using multi-omics and high-throughput chromosome conformation capture (Hi-C) analyses. The distribution of 6mA-modified sites varies across the genomes of 28 strains, and appears to be enriched near genes involved in carbohydrate metabolism. A pglX mutant, defective in 6mA modification, shows transcriptomic alterations but only modest changes in growth and genomic spatial organization.


Asunto(s)
Lacticaseibacillus paracasei , Lacticaseibacillus , Metilación de ADN , Genómica , Adenina/metabolismo
2.
Molecules ; 27(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35956915

RESUMEN

Nitrogen-rich heterocyclic compounds are important heterocyclic substances with extensive future applications for energetic materials due to their outstanding density and excellent physicochemical properties. However, the weak intermolecular interactions of these compounds are not clear, which severely limits their widespread application. Three nitrogen-rich heterocyclic compounds were chosen to detect their molecular geometry, stacking mode and intermolecular interactions by crystal structure, Hirshfeld surface, RDG and ESP. The results show that all atoms in each molecule are coplanar and that the stacking mode of the three crystals is a planar layer style. A large amount of inter- and intramolecular interaction exists in the three crystals. All principal types of intermolecular contacts in the three crystals are N···H interactions and they account for 40.9%, 38.9% and 32.9%, respectively. Hydrogen bonding, vdW interactions and steric effects in Crystal c are stronger than in Crystals a and b. The negative ESPs all concentrate on the nitrogen atoms in the three molecules. This work is expected to benefit the crystal engineering of heterocyclic energetic materials.


Asunto(s)
Compuestos Heterocíclicos , Compuestos Heterocíclicos/química , Enlace de Hidrógeno , Nitrógeno
3.
J Dairy Sci ; 105(3): 2049-2057, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34998557

RESUMEN

The antiphage ability is an important feature of fermentation strains in the dairy industry. Our previous work described the bacteriophage exclusion (BREX) system in the probiotic strain, Lactobacillus casei Zhang. The function of L. casei Zhang pglX gene in mediating 5'-ACRCm6AG-3' methylation was also confirmed. This study aimed to further dissect the function of the BREX system of L. casei Zhang by inactivating its second methyltransferase gene (LCAZH_2054). The methylome of the mutant, L. casei Zhang Δ2054, was profiled by single-molecule real-time sequencing. Then, the cell morphology, growth, plasmid transformation efficiency, and stability of the wildtype and mutant were compared. The mutant did not have an observable effect in microscopic and colony morphology, but it reached a higher cell density after entering the exponential phase without obvious increase in the cell viability. The mutant had fewer 5'-ACRCm6AG-3' methylation compared with the wildtype (1835 versus 1906). Interestingly, no significant difference was observed in the transformation efficiency between the 2 strains when plasmids without cognate recognition sequence (pSec:Leiss:Nuc and pG+host9) were transformed, contrasting to transforming cells with cognate recognition sequence-containing plasmids (pMSP3535 and pTRKH2). The efficiency of transforming pMSP3535 into the LCAZH_2054 mutant was significantly lower than the wildtype, whereas an opposite trend was seen in pTRKH2 transformation. Moreover, compared with the wildtype, the mutant strain had higher capacity in retaining pMSP3535 and lower capacity in retaining pTRKH2, suggesting an unequal tolerance level to different foreign DNA. In conclusion, LCAZH_2054 was not directly responsible for 5'-ACRCm6AG-3' methylation in L. casei Zhang, but it might help regulate the function and specificity of the BREX system.


Asunto(s)
Bacteriófagos , Lacticaseibacillus casei , Probióticos , Animales , Bacteriófagos/genética , Fermentación , Lacticaseibacillus casei/fisiología , Metiltransferasas/genética
4.
Appl Environ Microbiol ; 85(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31399407

RESUMEN

The bacteriophage exclusion (BREX) system is a novel prokaryotic defense system against bacteriophages. To our knowledge, no study has systematically characterized the function of the BREX system in lactic acid bacteria. Lactobacillus casei Zhang is a probiotic bacterium originating from koumiss. By using single-molecule real-time sequencing, we previously identified N6-methyladenine (m6A) signatures in the genome of L. casei Zhang and a putative methyltransferase (MTase), namely, pglX This work further analyzed the genomic locus near the pglX gene and identified it as a component of the BREX system. To decipher the biological role of pglX, an L. casei Zhang pglX mutant (ΔpglX) was constructed. Interestingly, m6A methylation of the 5'-ACRCAG-3' motif was eliminated in the ΔpglX mutant. The wild-type and mutant strains exhibited no significant difference in morphology or growth performance in de Man-Rogosa-Sharpe (MRS) medium. A significantly higher plasmid acquisition capacity was observed for the ΔpglX mutant than for the wild type if the transformed plasmids contained pglX recognition sites (i.e., 5'-ACRCAG-3'). In contrast, no significant difference was observed in plasmid transformation efficiency between the two strains when plasmids lacking pglX recognition sites were tested. Moreover, the ΔpglX mutant had a lower capacity to retain the plasmids than the wild type, suggesting a decrease in genetic stability. Since the Rebase database predicted that the L. casei PglX protein was bifunctional, as both an MTase and a restriction endonuclease, the PglX protein was heterologously expressed and purified but failed to show restriction endonuclease activity. Taken together, the results show that the L. casei Zhang pglX gene is a functional adenine MTase that belongs to the BREX system.IMPORTANCELactobacillus casei Zhang is a probiotic that confers beneficial effects on the host, and it is thus increasingly used in the dairy industry. The possession of an effective bacterial immune system that can defend against invasion of phages and exogenous DNA is a desirable feature for industrial bacterial strains. The bacteriophage exclusion (BREX) system is a recently described phage resistance system in prokaryotes. This work confirmed the function of the BREX system in L. casei and that the methyltransferase (pglX) is an indispensable part of the system. Overall, our study characterizes a BREX system component gene in lactic acid bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Bacteriófagos/fisiología , Lacticaseibacillus casei/enzimología , Metiltransferasas/genética , Proteínas Bacterianas/metabolismo , Lacticaseibacillus casei/virología , Metiltransferasas/metabolismo
5.
Food Sci Biotechnol ; 28(1): 139-145, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30815304

RESUMEN

Chinese Tianshan tibico grains were collected from the rural area of Tianshan in Xinjiang province, China. Typical tibico grains are known to consist of polysaccharide matrix that embeds a variety of bacteria and yeasts. These grains are widely used in some rural regions to produce a beneficial sugary beverage that is slightly acidic and contains low level of alcohol. This work aimed to characterize the microbiota composition of Chinese Tianshan tibicos using the single molecule, real-time sequencing technology, which is advantageous in generating long reads. Our results revealed that the microbiota mainly comprised of the bacterial species of Lactobacillus hilgardii, Lactococcus raffinolactis, Leuconostoc mesenteroides, Zymomonas mobilis, together with a Guehomyces pullulans-dominating fungal community. The data generated in this work helps identify beneficial microbes in Chinese Tianshan tibico grains.

6.
J Proteome Res ; 17(3): 1290-1299, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29405720

RESUMEN

Nutrient starvation is an important survival challenge for bacteria during industrial production of functional foods. As next-generation sequencing technology has greatly advanced, we performed proteomic and genomic analysis to investigate the response of Lactobacillus casei Zhang to a glucose-restricted environment. L. casei Zhang strains were permitted to evolve in glucose-restricted or normal medium from a common ancestor over a 3 year period, and they were sampled at 1000, 2000, 3000, 4000, 5000, 6000, 7000, and 8000 generations and subjected to proteomic and genomic analyses. Genomic resequencing data revealed different point mutations and other mutational events in each selected generation of L. casei Zhang under glucose restriction stress. The differentially expressed proteins induced by glucose restriction were mostly related to fructose and mannose metabolism, carbohydrate metabolic processes, lyase activity, and amino-acid-transporting ATPase activity. Integrative proteomic and genomic analysis revealed that the mutations protected L. casei Zhang against glucose starvation by regulating other cellular carbohydrate, fatty acid, and amino acid catabolism; phosphoenolpyruvate system pathway activation; glycogen synthesis; ATP consumption; pyruvate metabolism; and general stress-response protein expression. The results help reveal the mechanisms of adapting to glucose starvation and provide new strategies for enhancing the industrial utility of L. casei Zhang.


Asunto(s)
Adaptación Fisiológica/genética , Genoma Bacteriano , Glucosa/deficiencia , Lacticaseibacillus casei/metabolismo , Proteómica/métodos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Aminoácidos/metabolismo , Transporte Biológico , Medios de Cultivo/química , Medios de Cultivo/farmacología , Ácidos Grasos/metabolismo , Fructosa/metabolismo , Expresión Génica , Glucosa/farmacología , Glucógeno/biosíntesis , Lacticaseibacillus casei/efectos de los fármacos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/crecimiento & desarrollo , Liasas/genética , Liasas/metabolismo , Manosa/metabolismo , Fosfoenolpiruvato/metabolismo , Mutación Puntual , Estrés Fisiológico
7.
J Proteomics ; 176: 37-45, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29414317

RESUMEN

Lactobacillus plantarum, commonly isolated from plant material, is widely used to produce various types of fermented foods. However, nutrient-limiting conditions are often encountered during industrial applications. The present study aimed to investigate the response of L. plantarum P-8 to glucose-limited conditions in a long-term experiment. Genotypic and proteomic changes in L. plantarum P-8 were monitored over 3 years in glucose-limited and glucose-normal media using whole-genome resequencing and tandem mass tag-based quantitative proteomic analysis. Results showed that L. plantarum employed numerous survival mechanisms, including alteration of the cell envelope, activation of the PTS system, accumulation and consumption of amino acids, increase in the metabolism of carbohydrates (via glycolysis, citric acid cycle, and pyruvate metabolism), and increase in the production of ATP in response to glucose starvation. This study demonstrates the feasibility of experimental evolution of L. plantarum P-8, while whole-genome resequencing of adapted isolates provided clues toward bacterial functions involved and a deeper mechanistic understanding of the adaptive response of L. plantarum to glucose-limited conditions. SIGNIFICANCE: We have conducted a 3-year experiment monitoring genotypic and proteomic changes in Lactobacillus plantarum P-8 in glucose-limited and glucose-normal media. Whole-genome resequencing and tandem mass tag-based quantitative proteomics were performed for analyzing genomic evolution of L. plantarum P-8 in glucose-limited and glucose-normal conditions. In addition, differential expressed proteins in all generations between these two conditions were identified and functions of these proteins specific to L group were predicted. L. plantarum employed numerous survival mechanisms, including alteration of the cell envelope, activation of the PTS system, accumulation and consumption of amino acids, increase in the metabolism of carbohydrates (glycolysis, citric acid cycle, and pyruvate metabolism), and increase in the production of ATP in response to glucose starvation.


Asunto(s)
Adaptación Fisiológica , Genotipo , Glucosa/farmacología , Lactobacillus plantarum/química , Proteómica , Secuenciación Completa del Genoma , Adenosina Trifosfato/biosíntesis , Metabolismo de los Hidratos de Carbono , Genoma Bacteriano/efectos de los fármacos , Glucosa/deficiencia , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiología , Liasas de Fósforo-Oxígeno/metabolismo , Proteómica/métodos
8.
J Food Sci ; 82(5): 1193-1199, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28369806

RESUMEN

Koji is a kind of Japanese traditional fermented starter that has been used for centuries. Many fermented foods are made from koji, such as sake, miso, and soy sauce. This study used the single molecule real-time sequencing technology (SMRT) to investigate the bacterial and fungal microbiota of 3 Japanese koji samples. After SMRT analysis, a total of 39121 high-quality sequences were generated, including 14354 bacterial and 24767 fungal sequence reads. The high-quality gene sequences were assigned to 5 bacterial and 2 fungal plyla, dominated by Proteobacteria and Ascomycota, respectively. At the genus level, Ochrobactrum and Wickerhamomyces were the most abundant bacterial and fungal genera, respectively. The predominant bacterial and fungal species were Ochrobactrum lupini and Wickerhamomyces anomalus, respectively. Our study profiled the microbiota composition of 3 Japanese koji samples to the species level precision. The results may be useful for further development of traditional fermented products, especially optimization of koji preparation. Meanwhile, this study has demonstrated that SMRT is a robust tool for analyzing the microbial composition in food samples.


Asunto(s)
Hongos/clasificación , Alimentos de Soja/microbiología , Fermentación , Microbiología de Alimentos , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
BMC Genomics ; 18(1): 320, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28438179

RESUMEN

BACKGROUND: The extensive use of antibiotics in medicine has raised serious concerns about biosafety. However, the effect of antibiotic application on the adaptive evolution of microorganisms, especially to probiotic bacteria, has not been well characterized. Thus, the objective of the current work was to investigate how antibiotic selection forces might drive genome adaptation using Lactobacillus (L.) casei Zhang as a model. METHODS: Two antibiotics, amoxicillin and gentamicin, were consistently applied to the laboratory culture of L. casei Zhang. We then monitored the mutations in the bacterial genome and changes in the minimum inhibitory concentrations (MICs) of these two antibiotics along a 2000-generation-cultivation lasted over 10 months. RESULTS: We found an approximately 4-fold increase in the genome mutation frequency of L. casei Zhang, i.e. 3.5 × 10-9 per base pair per generation under either amoxicillin or gentamicin stress, when compared with the parallel controls grown without application of any antibiotics. The increase in mutation frequency is significantly lower than that previously reported in Escherichia (E.) coli. The rate of de novo mutations, i.e. 20 per genome, remained low and stable throughout the long-term cultivation. Moreover, the accumulation of new mutations stopped shortly after the maximum bacterial fitness (i.e. the antibiotic MICs) was reached. CONCLUSIONS: Our study has shown that the probiotic species, L. casei Zhang, has high genome stability even in the presence of long-term antibiotic stresses. However, whether this is a species-specific or universal characteristic for all probiotic bacteria remains to be explored.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Antibacterianos/farmacología , Evolución Molecular , Genoma Bacteriano/efectos de los fármacos , Genoma Bacteriano/genética , Lacticaseibacillus casei/efectos de los fármacos , Selección Genética , Adaptación Fisiológica/genética , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/fisiología , Mutación , Polimorfismo de Nucleótido Simple , Factores de Tiempo
10.
Front Microbiol ; 8: 165, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28223973

RESUMEN

Koumiss is a traditional fermented dairy product and a good source for isolating novel bacteria with biotechnology potential. In the present study, we applied the single-cell amplification technique in the metagenomics analysis of koumiss. This approach aimed at detecting the low-abundant bacteria in the koumiss. Briefly, each sample was first serially diluted until reaching the level of approximately 100 cells. Then, three diluted bacterial suspensions were randomly picked for further study. By analyzing 30 diluted koumiss suspensions, a total of 24 bacterial species were identified. In addition to the previously reported koumiss-associated species, such as Lactobacillus (L.) helveticus. Lactococcus lactis. L. buchneri, L. kefiranofaciens, and Acetobacter pasteurianus, we successfully detected three low-abundant taxa in the samples, namely L. otakiensis. Streptococcus macedonicus, and Ruminococcus torques. The functional koumiss metagenomes carried putative genes that relate to lactose metabolism and synthesis of typical flavor compounds. Our study would encourage the use of modern metagenomics to discover novel species of bacteria that could be useful in food industries.

11.
Sci Rep ; 6: 31403, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27510766

RESUMEN

Lactic acid bacteria that can produce alpha-galactosidase are a promising solution for improving the nutritional value of soy-derived products. For their commercial use in the manufacturing process, it is essential to understand the catabolic mechanisms that facilitate their growth and performance. In this study, we used comparative proteomic analysis to compare catabolism in an engineered isolate of Lactobacillus plantarum P-8 with enhanced raffinose metabolic capacity, with the parent (or wild-type) isolate from which it was derived. When growing on semi-defined medium with raffinose, a total of one hundred and twenty-five proteins were significantly up-regulated (>1.5 fold, P < 0.05) in the engineered isolate, whilst and one hundred and six proteins were significantly down-regulated (<-1.5 fold, P < 0.05). During the late stages of growth, the engineered isolate was able to utilise alternative carbohydrates such as sorbitol instead of raffinose to sustain cell division. To avoid acid damage the cell layer of the engineered isolate altered through a combination of de novo fatty acid biosynthesis and modification of existing lipid membrane phospholipid acyl chains. Interestingly, aspartate and glutamate metabolism was associated with this acid response. Higher intracellular aspartate and glutamate levels in the engineered isolate compared with the parent isolate were confirmed by further chemical analysis. Our study will underpin the future use of this engineered isolate in the manufacture of soymilk products.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Proteómica/métodos , Rafinosa/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/metabolismo , Ingeniería Metabólica , Valor Nutritivo , Sorbitol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA