Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Imaging ; 9(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36976106

RESUMEN

Cine-MRI for adhesion detection is a promising novel modality that can help the large group of patients developing pain after abdominal surgery. Few studies into its diagnostic accuracy are available, and none address observer variability. This retrospective study explores the inter- and intra-observer variability, diagnostic accuracy, and the effect of experience. A total of 15 observers with a variety of experience reviewed 61 sagittal cine-MRI slices, placing box annotations with a confidence score at locations suspect for adhesions. Five observers reviewed the slices again one year later. Inter- and intra-observer variability are quantified using Fleiss' (inter) and Cohen's (intra) κ and percentage agreement. Diagnostic accuracy is quantified with receiver operating characteristic (ROC) analysis based on a consensus standard. Inter-observer Fleiss' κ values range from 0.04 to 0.34, showing poor to fair agreement. High general and cine-MRI experience led to significantly (p < 0.001) better agreement among observers. The intra-observer results show Cohen's κ values between 0.37 and 0.53 for all observers, except one with a low κ of -0.11. Group AUC scores lie between 0.66 and 0.72, with individual observers reaching 0.78. This study confirms that cine-MRI can diagnose adhesions, with respect to a radiologist consensus panel and shows that experience improves reading cine-MRI. Observers without specific experience adapt to this modality quickly after a short online tutorial. Observer agreement is fair at best and area under the receiver operating characteristic curve (AUC) scores leave room for improvement. Consistently interpreting this novel modality needs further research, for instance, by developing reporting guidelines or artificial intelligence-based methods.

2.
Diagnosis (Berl) ; 4(2): 93-99, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29536921

RESUMEN

BACKGROUND: Misinterpretation of medical images is an important source of diagnostic error. Errors can occur in different phases of the diagnostic process. Insight in the error types made by learners is crucial for training and giving effective feedback. Most diagnostic skill tests however penalize diagnostic mistakes without an eye for the diagnostic process and the type of error. A radiology test with stepwise reasoning questions was used to distinguish error types in the visual diagnostic process. We evaluated the additional value of a stepwise question-format, in comparison with only diagnostic questions in radiology tests. METHODS: Medical students in a radiology elective (n=109) took a radiology test including 11-13 cases in stepwise question-format: marking an abnormality, describing the abnormality and giving a diagnosis. Errors were coded by two independent researchers as perception, analysis, diagnosis, or undefined. Erroneous cases were further evaluated for the presence of latent errors or partial knowledge. Inter-rater reliabilities and percentages of cases with latent errors and partial knowledge were calculated. RESULTS: The stepwise question-format procedure applied to 1351 cases completed by 109 medical students revealed 828 errors. Mean inter-rater reliability of error type coding was Cohen's κ=0.79. Six hundred and fifty errors (79%) could be coded as perception, analysis or diagnosis errors. The stepwise question-format revealed latent errors in 9% and partial knowledge in 18% of cases. CONCLUSIONS: A stepwise question-format can reliably distinguish error types in the visual diagnostic process, and reveals latent errors and partial knowledge.


Asunto(s)
Competencia Clínica , Errores Diagnósticos/clasificación , Radiología/educación , Estudiantes de Medicina , Evaluación Educacional/métodos , Humanos , Percepción , Radiografía/métodos , Reproducibilidad de los Resultados
3.
Acad Radiol ; 22(5): 640-5, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25683502

RESUMEN

RATIONALE AND OBJECTIVES: Radiology practice has become increasingly based on volumetric images (VIs), but tests in medical education still mainly involve two-dimensional (2D) images. We created a novel, digital, VI test and hypothesized that scores on this test would better reflect radiological anatomy skills than scores on a traditional 2D image test. To evaluate external validity we correlated VI and 2D image test scores with anatomy cadaver-based test scores. MATERIALS AND METHODS: In 2012, 246 medical students completed one of two comparable versions (A and B) of a digital radiology test, each containing 20 2D image and 20 VI questions. Thirty-three of these participants also took a human cadaver anatomy test. Mean scores and reliabilities of the 2D image and VI subtests were compared and correlated with human cadaver anatomy test scores. Participants received a questionnaire about perceived representativeness and difficulty of the radiology test. RESULTS: Human cadaver test scores were not correlated with 2D image scores, but significantly correlated with VI scores (r = 0.44, P < .05). Cronbach's α reliability was 0.49 (A) and 0.65 (B) for the 2D image subtests and 0.65 (A) and 0.71 (B) for VI subtests. Mean VI scores (74.4%, standard deviation 2.9) were significantly lower than 2D image scores (83.8%, standard deviation 2.4) in version A (P < .001). VI questions were considered more representative of clinical practice and education than 2D image questions and less difficult (both P < .001). CONCLUSIONS: VI tests show higher reliability, a significant correlation with human cadaver test scores, and are considered more representative for clinical practice than tests with 2D images.


Asunto(s)
Educación de Pregrado en Medicina , Evaluación Educacional/métodos , Radiología/educación , Cadáver , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
4.
Acad Radiol ; 22(5): 632-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25704588

RESUMEN

RATIONALE AND OBJECTIVES: In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional images. This study aimed to investigate and compare knowledge and skills used for interpretation of volumetric versus 2D images. MATERIALS AND METHODS: Twenty radiology clerks were asked to think out loud while reading four or five volumetric computed tomography (CT) images in stack mode and four or five 2D CT images. Cases were presented in a digital testing program allowing stack viewing of volumetric data sets and changing views and window settings. Thoughts verbalized by the participants were registered and coded by a framework of knowledge and skills concerning three components: perception, analysis, and synthesis. The components were subdivided into 16 discrete knowledge and skill elements. A within-subject analysis was performed to compare cognitive processes during volumetric image readings versus 2D cross-sectional image readings. RESULTS: Most utterances contained knowledge and skills concerning perception (46%). A smaller part involved synthesis (31%) and analysis (23%). More utterances regarded perception in volumetric image interpretation than in 2D image interpretation (Median 48% vs 35%; z = -3.9; P < .001). Synthesis was less prominent in volumetric than in 2D image interpretation (Median 28% vs 42%; z = -3.9; P < .001). No differences were found in analysis utterances. CONCLUSIONS: Cognitive processes in volumetric and 2D cross-sectional image interpretation differ substantially. Volumetric image interpretation draws predominantly on perceptual processes, whereas 2D image interpretation is mainly characterized by synthesis. The results encourage the use of volumetric images for teaching and testing perceptual skills.


Asunto(s)
Competencia Clínica , Tomografía Computarizada de Haz Cónico , Interpretación de Imagen Radiográfica Asistida por Computador/normas , Radiología/educación , Cognición , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...