Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 11(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34544132

RESUMEN

Onion is an important vegetable crop with an estimated genome size of 16 Gb. We describe the de novo assembly and ab initio annotation of the genome of a doubled haploid onion line DHCU066619, which resulted in a final assembly of 14.9 Gb with an N50 of 464 Kb. Of this, 2.4 Gb was ordered into eight pseudomolecules using four genetic linkage maps. The remainder of the genome is available in 89.6 K scaffolds. Only 72.4% of the genome could be identified as repetitive sequences and consist, to a large extent, of (retro) transposons. In addition, an estimated 20% of the putative (retro) transposons had accumulated a large number of mutations, hampering their identification, but facilitating their assembly. These elements are probably already quite old. The ab initio gene prediction indicated 540,925 putative gene models, which is far more than expected, possibly due to the presence of pseudogenes. Of these models, 47,066 showed RNASeq support. No gene rich regions were found, genes are uniformly distributed over the genome. Analysis of synteny with Allium sativum (garlic) showed collinearity but also major rearrangements between both species. This assembly is the first high-quality genome sequence available for the study of onion and will be a valuable resource for further research.


Asunto(s)
Cebollas , Secuencias Repetitivas de Ácidos Nucleicos , Tamaño del Genoma , Cebollas/genética
2.
Plant J ; 80(1): 136-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25039268

RESUMEN

We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species- and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Cruzamiento , Mapeo Cromosómico , ADN de Plantas/química , ADN de Plantas/genética , Frutas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...