Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6694): eadj4503, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662846

RESUMEN

Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.


Asunto(s)
Ascomicetos , Carbono , Interacción Gen-Ambiente , Nitrógeno , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Carbono/metabolismo , Genoma Fúngico , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Filogenia
2.
Nat Commun ; 14(1): 690, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755033

RESUMEN

Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Filogenia , Saccharomyces/genética , Biodiversidad , Fenotipo
3.
Yeast ; 39(1-2): 55-68, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741351

RESUMEN

Yeasts have broad importance as industrially and clinically relevant microbes and as powerful models for fundamental research, but we are only beginning to understand the roles yeasts play in natural ecosystems. Yeast ecology is often more difficult to study compared to other, more abundant microbes, but growing collections of natural yeast isolates are beginning to shed light on fundamental ecological questions. Here, we used environmental sampling and isolation to assemble a dataset of 1962 isolates collected from throughout the contiguous United States of America (USA) and Alaska, which were then used to uncover geographic patterns, along with substrate and temperature associations among yeast taxa. We found some taxa, including the common yeasts Torulaspora delbrueckii and Saccharomyces paradoxus, to be repeatedly isolated from multiple sampled regions of the USA, and we classify these as broadly distributed cosmopolitan yeasts. A number of yeast taxon-substrate associations were identified, some of which were novel and some of which support previously reported associations. Further, we found a strong effect of isolation temperature on the phyla of yeasts recovered, as well as for many species. We speculate that substrate and isolation temperature associations reflect the ecological diversity of and niche partitioning by yeast taxa.


Asunto(s)
Ecosistema , Torulaspora , Temperatura , Levaduras
4.
Genetics ; 217(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33724406

RESUMEN

Dollo's law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/genética , Hongos/genética , Galactosidasas/genética , Transferencia de Gen Horizontal , Hongos/clasificación , Galactosa/genética , Galactosa/metabolismo , Filogenia
5.
PLoS Biol ; 17(5): e3000255, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112549

RESUMEN

Cell-cycle checkpoints and DNA repair processes protect organisms from potentially lethal mutational damage. Compared to other budding yeasts in the subphylum Saccharomycotina, we noticed that a lineage in the genus Hanseniaspora exhibited very high evolutionary rates, low Guanine-Cytosine (GC) content, small genome sizes, and lower gene numbers. To better understand Hanseniaspora evolution, we analyzed 25 genomes, including 11 newly sequenced, representing 18/21 known species in the genus. Our phylogenomic analyses identify two Hanseniaspora lineages, a faster-evolving lineage (FEL), which began diversifying approximately 87 million years ago (mya), and a slower-evolving lineage (SEL), which began diversifying approximately 54 mya. Remarkably, both lineages lost genes associated with the cell cycle and genome integrity, but these losses were greater in the FEL. E.g., all species lost the cell-cycle regulator WHIskey 5 (WHI5), and the FEL lost components of the spindle checkpoint pathway (e.g., Mitotic Arrest-Deficient 1 [MAD1], Mitotic Arrest-Deficient 2 [MAD2]) and DNA-damage-checkpoint pathway (e.g., Mitosis Entry Checkpoint 3 [MEC3], RADiation sensitive 9 [RAD9]). Similarly, both lineages lost genes involved in DNA repair pathways, including the DNA glycosylase gene 3-MethylAdenine DNA Glycosylase 1 (MAG1), which is part of the base-excision repair pathway, and the DNA photolyase gene PHotoreactivation Repair deficient 1 (PHR1), which is involved in pyrimidine dimer repair. Strikingly, the FEL lost 33 additional genes, including polymerases (i.e., POLymerase 4 [POL4] and POL32) and telomere-associated genes (e.g., Repressor/activator site binding protein-Interacting Factor 1 [RIF1], Replication Factor A 3 [RFA3], Cell Division Cycle 13 [CDC13], Pbp1p Binding Protein [PBP2]). Echoing these losses, molecular evolutionary analyses reveal that, compared to the SEL, the FEL stem lineage underwent a burst of accelerated evolution, which resulted in greater mutational loads, homopolymer instabilities, and higher fractions of mutations associated with the common endogenously damaged base, 8-oxoguanine. We conclude that Hanseniaspora is an ancient lineage that has diversified and thrived, despite lacking many otherwise highly conserved cell-cycle and genome integrity genes and pathways, and may represent a novel, to our knowledge, system for studying cellular life without them.


Asunto(s)
Ciclo Celular/genética , Reparación del ADN/genética , Genes Fúngicos , Filogenia , Saccharomycetales/citología , Saccharomycetales/genética , Secuencia de Bases , Daño del ADN/genética , Evolución Molecular , Fenotipo
6.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415838

RESUMEN

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genética
7.
Proc Natl Acad Sci U S A ; 115(43): 11030-11035, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297402

RESUMEN

Secondary metabolites are key in how organisms from all domains of life interact with their environment and each other. The iron-binding molecule pulcherrimin was described a century ago, but the genes responsible for its production in budding yeasts have remained uncharacterized. Here, we used phylogenomic footprinting on 90 genomes across the budding yeast subphylum Saccharomycotina to identify the gene cluster associated with pulcherrimin production. Using targeted gene replacements in Kluyveromyces lactis, we characterized the four genes that make up the cluster, which likely encode two pulcherriminic acid biosynthesis enzymes, a pulcherrimin transporter, and a transcription factor involved in both biosynthesis and transport. The requirement of a functional putative transporter to utilize extracellular pulcherrimin-complexed iron demonstrates that pulcherriminic acid is a siderophore, a chelator that binds iron outside the cell for subsequent uptake. Surprisingly, we identified homologs of the putative transporter and transcription factor genes in multiple yeast genera that lacked the biosynthesis genes and could not make pulcherrimin, including the model yeast Saccharomyces cerevisiae We deleted these previously uncharacterized genes and showed they are also required for pulcherrimin utilization in S. cerevisiae, raising the possibility that other genes of unknown function are linked to secondary metabolism. Phylogenetic analyses of this gene cluster suggest that pulcherrimin biosynthesis and utilization were ancestral to budding yeasts, but the biosynthesis genes and, subsequently, the utilization genes, were lost in many lineages, mirroring other microbial public goods systems that lead to the rise of cheater organisms.


Asunto(s)
Familia de Multigenes/genética , Saccharomycetales/genética , Metabolismo Secundario/genética , Hierro/metabolismo , Kluyveromyces/genética , Proteínas de Transporte de Membrana/genética , Filogenia , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Sideróforos/genética , Factores de Transcripción/genética
8.
BMC Biol ; 16(1): 26, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499717

RESUMEN

BACKGROUND: Associations between traits are prevalent in nature, occurring across a diverse range of taxa and traits. Individual traits may co-evolve with one other, and these correlations can be driven by factors intrinsic or extrinsic to an organism. However, few studies, especially in microbes, have simultaneously investigated both across a broad taxonomic range. Here we quantify pairwise associations among 48 traits across 784 diverse yeast species of the ancient budding yeast subphylum Saccharomycotina, assessing the effects of phylogenetic history, genetics, and ecology. RESULTS: We find extensive negative (traits that tend to not occur together) and positive (traits that tend to co-occur) pairwise associations among traits, as well as between traits and environments. These associations can largely be explained by the biological properties of the traits, such as overlapping biochemical pathways. The isolation environments of the yeasts explain a minor but significant component of the variance, while phylogeny (the retention of ancestral traits in descendant species) plays an even more limited role. Positive correlations are pervasive among carbon utilization traits and track with chemical structures (e.g., glucosides and sugar alcohols) and metabolic pathways, suggesting a molecular basis for the presence of suites of traits. In several cases, characterized genes from model organisms suggest that enzyme promiscuity and overlapping biochemical pathways are likely mechanisms to explain these macroevolutionary trends. Interestingly, fermentation traits are negatively correlated with the utilization of pentose sugars, which are major components of the plant biomass degraded by fungi and present major bottlenecks to the production of cellulosic biofuels. Finally, we show that mammalian pathogenic and commensal yeasts have a suite of traits that includes growth at high temperature and, surprisingly, the utilization of a narrowed panel of carbon sources. CONCLUSIONS: These results demonstrate how both intrinsic physiological factors and extrinsic ecological factors drive the distribution of traits present in diverse organisms across macroevolutionary timescales.


Asunto(s)
Evolución Biológica , Variación Genética/fisiología , Redes y Vías Metabólicas/fisiología , Filogenia , Saccharomycetales/genética , Saccharomycetales/metabolismo
9.
Mol Biol Evol ; 32(11): 2818-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26269586

RESUMEN

The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.


Asunto(s)
Saccharomyces/genética , Secuencia de Bases , Cerveza/microbiología , Mapeo Cromosómico , Evolución Molecular , Genoma Fúngico , Genómica , Hibridación Genética , Datos de Secuencia Molecular , Filogenia , Saccharomyces cerevisiae/genética
10.
FEMS Yeast Res ; 15(3)2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25743785

RESUMEN

Compared to its status as an experimental model system and importance to industry, the ecology and genetic diversity of the genus Saccharomyces has received less attention. To investigate systematically the biogeography, community members and habitat of these important yeasts, we isolated and identified nearly 600 yeast strains using sugar-rich enrichment protocols. Isolates were highly diverse and contained representatives of more than 80 species from over 30 genera, including eight novel species that we describe here: Kwoniella betulae f.a. (yHKS285(T) = NRRL Y-63732(T) = CBS 13896(T)), Kwoniella newhampshirensis f.a. (yHKS256(T) = NRRL Y-63731(T) = CBS 13917(T)), Cryptococcus wisconsinensis (yHKS301(T) = NRRL Y-63733(T) = CBS 13895(T)), Cryptococcus tahquamenonensis (yHAB242(T) = NRRL Y-63730(T) = CBS 13897(T)), Kodamaea meredithiae f.a. (yHAB239(T) = NRRL Y-63729(T) = CBS 13899(T)), Blastobotrys buckinghamii (yHAB196(T) = NRRL Y-63727(T) = CBS 13900(T)), Candida sungouii (yHBJ21(T) = NRRL Y-63726(T) = CBS 13907(T)) and Cyberlindnera culbertsonii f.a. (yHAB218(T) = NRRL Y-63728(T) = CBS 13898(T)), spp. nov. Saccharomyces paradoxus was one of the most frequently isolated species and was represented by three genetically distinct lineages in Wisconsin alone. We found a statistically significant association between Quercus (oak) samples and the isolation of S. paradoxus, as well as several novel associations. Variation in temperature preference was widespread across taxonomic ranks and evolutionary timescales. This survey highlights the genetic and taxonomic diversity of yeasts and suggests that host and temperature preferences are major ecological factors.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/aislamiento & purificación , Candida/clasificación , Candida/aislamiento & purificación , Especificidad del Huésped , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , Basidiomycota/genética , Basidiomycota/fisiología , Candida/genética , Candida/fisiología , ADN de Hongos/química , ADN de Hongos/genética , Microbiología Ambiental , Datos de Secuencia Molecular , Saccharomycetales/genética , Saccharomycetales/fisiología , Análisis de Secuencia de ADN , Temperatura , Wisconsin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...