Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(13): 130201, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613310

RESUMEN

Universality of local unitary transformations is one of the cornerstones of quantum computing with many applications and implications that go beyond this field. However, it has recently been shown that this universality does not hold in the presence of continuous symmetries: generic symmetric unitaries on a composite system cannot be implemented, even approximately, using local symmetric unitaries on the subsystems. In this Letter, we show that, despite these constraints, any SU(2) rotationally invariant unitary can be realized with the Heisenberg exchange interaction, which is 2-local and rotationally invariant, provided that the system interacts with a pair of ancilla qubits. We also show that a single ancilla is not enough to achieve universality. Furthermore, we study qubit circuits formed from k-local rotationally invariant unitaries and fully characterize the constraints imposed by locality on the realizable unitaries. We also find an interpretation of these constraints in terms of the average energy of states with a fixed angular momentum.

2.
Entropy (Basel) ; 20(4)2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33265328

RESUMEN

We present an axiomatic framework for thermodynamics that incorporates information as a fundamental concept. The axioms describe both ordinary thermodynamic processes and those in which information is acquired, used and erased, as in the operation of Maxwell's demon. This system, similar to previous axiomatic systems for thermodynamics, supports the construction of conserved quantities and an entropy function governing state changes. Here, however, the entropy exhibits both information and thermodynamic aspects. Although our axioms are not based upon probabilistic concepts, a natural and highly useful concept of probability emerges from the entropy function itself. Our abstract system has many models, including both classical and quantum examples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...