Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Plant Sci ; 14: 1258100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810388

RESUMEN

Epichloë spp. often form mutualistic interactions with cool-season grasses, such as Lolium perenne. However, the molecular mechanisms underlying this interaction remain poorly understood. In this study, we employed reduced representation bisulfite sequencing method (epiGBS) to investigate the impact of the Epichloë sp. LpTG-3 strain AR37 on the methylome of L. perenne across multiple grass generations and under drought stress conditions. Our results showed that the presence of the endophyte leads to a decrease in DNA methylation across genomic features, with differentially methylated regions primarily located in intergenic regions and CHH contexts. The presence of the endophyte was consistently associated with hypomethylation in plants across generations. This research sheds new light on the molecular mechanisms governing the mutualistic interaction between Epichloë sp. LpTG-3 strain AR37 and L. perenne. It underscores the role of methylation changes associated with endophyte infection and suggests that the observed global DNA hypomethylation in L. perenne may be influenced by factors such as the duration of the endophyte-plant association and the accumulation of genetic and epigenetic changes over time.

3.
Front Plant Sci ; 11: 570026, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193501

RESUMEN

Infection of the pasture grass Lolium perenne with the seed-transmitted fungal endophyte Epichloë festucae enhances its resilience to biotic and abiotic stress. Agricultural benefits of endophyte infection can be increased by generating novel symbiotic associations through inoculating L. perenne with selected Epichloë strains. Natural symbioses have coevolved over long periods. Thus, artificial symbioses will probably not have static properties, but symbionts will coadapt over time improving the fitness of the association. Here we report for the first time on temporal changes in a novel association of Epichloë strain AR37 and the L. perenne cultivar Grasslands Samson. Over nine generations, a seed maintenance program had increased the endophyte seed transmission rates to > 95% (from an initial 76%). We observed an approximately fivefold decline in endophyte biomass concentration in vegetative tissues over time (between generations 2 and 9). This indicates strong selection pressure toward reducing endophyte-related fitness costs by reducing endophyte biomass, without compromising the frequency of endophyte transmission to seed. We observed no obvious changes in tillering and only minor transcriptomic changes in infected plants over time. Functional analysis of 40 plant genes, showing continuously decreasing expression over time, suggests that adaptation of host metabolism and defense mechanisms are important for increasing the fitness of this association, and possibly fitness of such symbioses in general. Our results indicate that fitness of novel associations is likely to improve over time and that monitoring changes in novel associations can assist in identifying key features of endophyte-mediated enhancement of host fitness.

4.
J Chem Ecol ; 44(10): 957-964, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30046969

RESUMEN

Epichloë fungi (Ascomycota) live within aboveground tissues of grasses and can have important implications for natural and managed ecosystems through production of alkaloids. Nonetheless, vertebrate herbivores may possess traits, like oral secretions, that mitigate effects of alkaloids. We tested if sheep saliva mitigates effects of Epichloë alkaloids on a beetle pest of perennial ryegrass (Lolium perenne L.) in a New Zealand pasture setting. Plants with one of several fungal isolates were clipped with scissors, grazed by sheep, or clipped with sheep saliva applied to cut ends of stems. We then assessed feeding damage by Argentine stem weevils on blade segments collected from experimental plants. We found that clipping plants induced synthesis of an alkaloid that reduces feeding by beetles and that sheep saliva mitigates this effect. Unexpectedly, the alkaloid (perloline) that explains variation in beetle feeding is one produced not by the endophyte, but rather by the plant. Yet, these effects depended upon fungal isolate. Such indirect, complex interactions may be much more common in both managed and natural grassland systems than typically thought and could have implications for managing grazing systems.


Asunto(s)
Ascomicetos/fisiología , Ecosistema , Lolium , Ovinos/microbiología , Gorgojos/microbiología , Alcaloides/farmacología , Animales , Ascomicetos/metabolismo , Nueva Zelanda , Saliva/metabolismo , Simbiosis , Gorgojos/efectos de los fármacos
5.
Mol Breed ; 35(8): 161, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26203296

RESUMEN

The association between perennial ryegrass (Loliumperenne L.) and its Epichloë fungal endophyte symbiont, Epichloëfestucae var. lolii, supports the persistence of ryegrass-based pastures principally by producing bioactive alkaloid compounds that deter invertebrate herbivory. The host plant genotype affects endophyte trait expression, and elucidation of the underlying genetic mechanisms would enhance understanding of the symbiosis and support improvement of inplanta endophyte performance through plant breeding. Rapid metabolite profiling and enzyme-linked immunosorbent assay were used to quantify endophyte alkaloids and mycelial mass (MM) in leaves harvested, in consecutive autumns, from an F1 mapping population hosting standard toxic endophyte. Co-aligned quantitative trait loci (QTL) on linkage groups (LG)2, LG4 and LG7 for MM and concentrations of alkaloids peramine and ergovaline confirmed host plant effects on both MM and alkaloid level and inferred the effect on alkaloids was modulated through the quantity of endophyte present in the leaf tissue. For ergovaline, host regulation independent of endophyte concentration was also indicated, by the presence of MM-independent ergovaline QTL on LG4 and LG7. Partitioning of host genetic influence between MM-dependent and MM-independent mechanisms was also observed for the alkaloid N-formylloline (NFL), in a second mapping population harbouring a tall fescue-sourced endophyte. Single-marker analysis on repeated MM and NFL measures identified marker-trait associations at nine genome locations, four affecting both NFL and MM but five influencing NFL concentration alone. Co-occurrence of QTL on LG3, LG4 and LG7 in both mapping populations is evidence for host regulatory loci effective across genetic backgrounds and independent of endophyte variant. Variation at these loci may be exploited using marker-assisted breeding to improve endophyte trait expression in different host population × endophyte combinations.

6.
FEMS Microbiol Ecol ; 88(1): 94-106, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24754753

RESUMEN

Grasses of the tribe Triticeae were screened to determine the presence of mutualistic epichloae fungal endophytes. Over 1500 accessions, from more than 250 species, encompassing 22 genera within the Triticeae were screened using immunodetection and direct staining/microscopy techniques. Only two genera, Elymus and Hordeum, were identified as harbouring epichloae endophytes with accessions native to a range of countries including Canada, China, Iran, Kazakhstan, Kyrgyzstan, Mongolia, Russia and the USA. Genetic analysis based on simple sequence repeat data revealed that the majority of endophytes cluster according to geographical regions rather than to host species; many strains isolated from Hordeum grouped with those derived from Elymus, and amongst the Elymus-derived strains, there was no clear correspondence between clustering topology and host species. This is the first detailed survey demonstrating the genetic diversity of epichloae endophytes within the Triticeae and highlights the importance of germplasm centres for not only preserving the genetic diversity of plant species but also the beneficial microorganisms they may contain.


Asunto(s)
Hongos/clasificación , Poaceae/microbiología , Simbiosis , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/fisiología , Repeticiones de Microsatélite , Filogenia , Poaceae/fisiología
7.
Fungal Biol ; 118(3): 316-24, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24607355

RESUMEN

Perennial ryegrass (Lolium perenne) is a widely used pasture grass, which is frequently infected by Neotyphodium lolii endophytes that enhance grass performance but can produce alkaloids inducing toxicosis in livestock. Several selected endophyte strains with reduced livestock toxicity, but that confer insect resistance, are now in common use. Little is known regarding the survival and persistence of these endophytes when in competition with common toxic endophytes. This is mainly because there are currently no assays available to easily and reliably quantify different endophytes in pastures or in batches of seeds infected with multiple strains. We developed real time PCR assays, based on secondary metabolite genes known to differ between N. lolii endophyte strains, to quantify two selected endophytes, AR1 and AR37, and a common toxic ecotype used in New Zealand. A duplex PCR allowed assessment of endophyte:grass DNA ratios with high sensitivity, specificity and precision. Endophyte specific primers/probes could detect contamination of AR37 seeds with other endophytes down to a level of 3-25%. We demonstrated that it is possible to quantify different endophyte strains simultaneously using multiplex PCR. This method has potential applications in management of endophytes in pastures and in fundamental research into this important plant-microbe symbiosis.


Asunto(s)
Recuento de Colonia Microbiana , Endófitos/aislamiento & purificación , Lolium/microbiología , Redes y Vías Metabólicas/genética , Neotyphodium/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Endófitos/clasificación , Endófitos/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Neotyphodium/clasificación , Neotyphodium/genética , Nueva Zelanda , Sensibilidad y Especificidad
8.
New Phytol ; 173(4): 787-797, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17286827

RESUMEN

The relationship between cool-season grasses and fungal endophytes is widely regarded as mutualistic, but there is growing uncertainty about whether changes in resource supply and environment benefit both organisms to a similar extent. Here, we infected two perennial ryegrass (Lolium perenne) cultivars (AberDove, Fennema) that differ in carbohydrate content with three strains of Neotyphodium lolii (AR1, AR37, common strain) that differ intrinsically in alkaloid profile. We grew endophyte-free and infected plants under high and low nitrogen (N) supply and used quantitative PCR (qPCR) to estimate endophyte concentrations in harvested leaf tissues. Endophyte concentration was reduced by 40% under high N supply, and by 50% in the higher sugar cultivar. These two effects were additive (together resulting in 75% reduction). Alkaloid production was also reduced under both increased N supply and high sugar cultivar, and for three of the four alkaloids quantified, concentrations were linearly related to endophyte concentration. The results stress the need for wider quantification of fungal endophytes in the grassland-foliar endophyte context, and have implications for how introducing new cultivars, novel endophytes or increasing N inputs affect the role of endophytes in grassland ecosystems.


Asunto(s)
Alcaloides/metabolismo , Hongos/metabolismo , Lolium/metabolismo , Lolium/microbiología , Nitrógeno/metabolismo , Carbohidratos/análisis , Hongos/genética , Lolium/química , Proteínas de Plantas/análisis , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...