Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Food Prot ; 82(8): 1398-1404, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31335182

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) strains are often found in food and cause human infections. Although STEC O157:H7 is most often responsible for human disease, various non-O157 subtypes have caused individual human infections or outbreaks. The importance of STEC serogroup typing is decreasing while detection of virulence gene patterns has become more relevant. Whole genome sequencing (WGS) reveals the entire spectrum of pathogen information, such as toxin variant, serotype, sequence type, and virulence factors. Flour has not been considered as a vector for STEC; however, this product has been associated with several STEC outbreaks in the last decade. Flour is a natural product, and milling does not include a germ-reducing step. Flour is rarely eaten raw, but the risks associated with the consumption of unbaked dough are probably underestimated. The aim of this study was to determine the prevalence of STEC in flour samples (n = 93) collected from Swiss markets and to fully characterize the isolates by PCR assay and WGS. The prevalence of STEC in these flour samples was 10.8% as indicated by PCR, and a total of 10 STEC strains were isolated (two flour samples were positive for two STEC subtypes). We found one stx2-positve STEC isolate belonging to the classic serogroups frequently associated with outbreaks that could potentially cause severe disease. However, we also found several other common or less common STEC subtypes with diverse virulence patterns. Our results reveal the benefits of WGS as a characterization tool and that flour is a potentially and probably underestimated source for STEC infections in humans.


Asunto(s)
Proteínas de Escherichia coli , Harina , Genoma Bacteriano , Escherichia coli Shiga-Toxigénica , Secuenciación Completa del Genoma , Harina/microbiología , Genoma Bacteriano/genética , Reacción en Cadena de la Polimerasa , Escherichia coli Shiga-Toxigénica/genética , Suiza
2.
Front Microbiol ; 8: 579, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28439262

RESUMEN

Heat treatment is a widely used process to reduce bacterial loads in the food industry or to decontaminate surfaces, e.g., in hospital settings. However, there are situations where lower temperatures must be employed, for instance in case of food production such as raw milk cheese or for decontamination of medical devices such as thermo-labile flexible endoscopes. A recently identified locus of heat resistance (LHR) has been shown to be present in and confer heat resistance to a variety of Enterobacteriaceae, including Escherichia coli isolates from food production settings and clinical ESBL-producing E. coli isolates. Here, we describe the presence of two distinct LHR variants within a particularly heat resistant E. coli raw milk cheese isolate. We demonstrate for the first time in this species the presence of one of these LHRs on a plasmid, designated pFAM21805, also encoding type 3 fimbriae and three bacteriocins and corresponding self-immunity proteins. The plasmid was highly transferable to other E. coli strains, including Shiga-toxin-producing strains, and conferred LHR-dependent heat resistance as well as type 3 fimbriae-dependent biofilm formation capabilities. Selection for and acquisition of this "survival" plasmid by pathogenic organisms, e.g., in food production environments, may pose great concern and emphasizes the need to screen for the presence of LHR genes in isolates.

3.
Int J Food Microbiol ; 162(2): 190-212, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22939912

RESUMEN

The involvement of the pathogenic Shiga-toxin-producing Escherichia coli (STEC; also called verocytotoxic-producing E. coli or VTEC) in sporadic cases and disease outbreaks is presently increasing. Infrequent cases are due to ingestion of milk and dairy products. As ruminants are healthy carriers of STEC and most dairy products may provide these bacteria with favourable conditions for their growth, milk and dairy products are a potential source of STEC. But not all STEC serotypes are pathogens; only relatively small numbers in the entire family of STEC are pathogenic. This review focuses on the recent advances in understanding of STEC and their significance in milk and dairy products. It is intended to gather the information that is needed to understand how these bacteria are described, detected and characterised, how they contaminate milk and grow in dairy products, and how the dairy industry can prevent them from affecting the consumer.


Asunto(s)
Productos Lácteos/microbiología , Microbiología de Alimentos , Escherichia coli Shiga-Toxigénica/fisiología , Animales , Técnicas de Tipificación Bacteriana , Técnicas Bacteriológicas , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Humanos , Viabilidad Microbiana , Leche/microbiología , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA