Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 40(14): 3476-83, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21359282

RESUMEN

The synthesis of five homoleptic transition metal complexes of bis-(phenyl)-diisoindol-aza-methene is described together with the optical, electrochemical and thermal properties of these compounds. Additionally, crystal structures for the Co and the Zn complex are reported.

2.
Chemistry ; 17(10): 2939-47, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21290438

RESUMEN

A series of novel aza-diisoindolmethine dyes 9 with six different aryl and heteroaryl groups at the indole moiety have been synthesized by the addition of aryl Grignard compounds to phthalodinitrile and subsequent reaction with formamide. A plausible reaction mechanism, through a Leuckart-Wallach-type reduction has been confirmed by means of DFT calculations of the related transition and intermediate states. The corresponding boron difluoride complexes (10) of 9 were prepared in a subsequent reaction step and the spectroscopic and electrochemical properties of 9 and 10 have been investigated both experimentally and theoretically. The aza-diisoindolmethines 9 exhibit an absorption maximum in the range from 615 to 720 nm, whereas the complexes 10 show a bathochromically shifted absorption maximum between 681 and 793 nm. Measurements of 9 and 10 by cyclic voltammetry display fully reversible redox waves for the reduction and oxidation with higher potentials for 10. From the measured redox potentials, the HOMO and LUMO energy levels were calculated for 9 and 10. The frontier orbital energies, the energies of the absorption bands, as well as the orbitals involved in the absorption process were calculated with DFT and compared to the measured results of 9 and 10. The absorption maximum can be related to an intense HOMO-LUMO transition and the more-pronounced stabilization of the LUMO upon complexation is the origin of the bathochromic shift of the absorption. Additionally, single-crystal structures for two species, 10 d and 10 f, are reported.

3.
Chemistry ; 16(25): 7563-71, 2010 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-20486109

RESUMEN

The reduction of digallane [(dpp-bian)Ga-Ga(dpp-bian)] (1) (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with lithium and sodium in diethyl ether, or with potassium in THF affords compounds featuring the direct alkali metal-gallium bonds, [(dpp-bian)Ga-Li(Et(2)O)(3)] (2), [(dpp-bian)Ga-Na(Et(2)O)(3)] (3), and [(dpp-bian)Ga-K(thf)(5)] (7), respectively. Crystallization of 3 from DME produces compound [(dpp-bian)Ga-Na(dme)(2)] (4). Dissolution of 3 in THF and subsequent crystallization from diethyl ether gives [(dpp-bian)Ga-Na(thf)(3)(Et(2)O)] (5). Ionic [(dpp-bian)Ga](-)[Na([18]crown-6)(thf)(2)](+) (6a) and [(dpp-bian)Ga](-)[Na(Ph(3)PO)(3)(thf)](+) (6b) were obtained from THF after treatment of 3 with [18]crown-6 and Ph(3)PO, respectively. The reduction of 1 with Group 2 metals in THF affords [(dpp-bian)Ga](2)M(thf)(n) (M=Mg (8), n=3; M=Ca (9), Sr (10), n=4; M=Ba (11), n=5). The molecular structures of 4-7 and 11 have been determined by X-ray crystallography. The Ga-Na bond lengths in 3-5 vary notably depending on the coordination environment of the sodium atom.

4.
Inorg Chem ; 49(6): 2901-10, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20151685

RESUMEN

The reduction of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian) with an excess of samarium in 1,2-dimethoxyethane (dme) affords the Sm(II) complex (dpp-Bian)Sm(dme)(3) (1). The reaction of 1 with 0.5 mol equiv of 1,2-dibromostilbene proceeds with the formation of the dimeric Sm(III) complex [(dpp-Bian)SmBr(dme)](2) (2). Oxidation of both the metal and the dpp-Bian ligand takes place if 1 is reacted with equimolar amounts of 1,2-dibromostilbene or iodine, yielding the monomeric Sm(III) derivatives (dpp-Bian)SmBr(2)(dme) (3) and (dpp-Bian)SmI(2)(THF)(2) (4; THF = tetrahydrofuran), respectively. The reaction of 1 with 0.5 mol equiv of iodine followed by 0.5 mol equiv of tetramethylthiuram disulfide gives the Sm(III) complex (dpp-Bian)SmI[SC(S)NMe(2)](dme) (5). Compound 4 and tBuOK react with the formation of the iodine-bridged dimer [(dpp-Bian)SmI(OtBu)(THF)](2) (6). Complexes 1 and 2 have been characterized by (1)H NMR spectroscopy and complexes 2-6 by their molecular structures, which were determined by single-crystal X-ray diffraction.

5.
Chemistry ; 14(32): 10085-93, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18785664

RESUMEN

Oxidation of tin(IV) o-amidophenolate complexes [Sn(ap)Ph(2)] (1) and [Sn(ap)Et(2)(thf)] (2) (ap=dianion of 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone (ImQ)) with molecular oxygen and sulfur in toluene solutions was investigated. The reaction of oxygen with 1 at room temperature forms a paramagnetic derivative [Sn(isq)(2)Ph(2)] (3) (isq=radical anion of ImQ) and diphenyltin(IV) oxide [{Ph(2)SnO}(n)]. Interaction of 1 with sulfur gives another monophenyl-substituted paramagnetic tin(IV) complex, [Sn(ap)(isq)Ph] (4), and the sulfide, [Ph(3)Sn](2)S. The oxidation of 2 with oxygen and with sulfur proceeds through the derivative [Sn(isq)(2)Et(2)] (7), which undergoes alkyl elimination to give two new tin(IV) compounds, [Sn(ap)(isq)Et] (5) and [Sn(ap)(EtImQ)Et] (6) (EtImQ=2,4-di-tert-butyl-6-(2,6-diisopropylphenylimino)-3-ethylcyclohexa-1,4-dienolate ligand), respectively, along with the corresponding alkyltin(IV) oxide and sulfide. Complexes 3-5 and 7 were studied by EPR spectroscopy. The structures of 3, 4 and 6 were investigated by X-ray analysis.

7.
Chemistry ; 13(25): 7050-6, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17696191

RESUMEN

1,2-Bis[(2,6-diisopropylphenyl)imino]acenaphthene) (dpp-bian) stabilizes gallium-gallium and zinc-gallium bonds (compounds 1-3). The compound [(dpp-bian)Ga-Ga(dpp-bian)] (2) was prepared by the reaction of GaCl3 with K3[dpp-bian] and the heterometallic [(dpp-bian)Zn-Ga(dpp-bian)] (3) was prepared by a simple one-pot reaction of [{(dpp-bian)ZnI}(2)] with GaCl3 and K4[dpp-bian]. In contrast to [(dpp-bian)Zn-Zn(dpp-bian)] (1) and 3, compound 2 is ESR silent, thus proving the dianionic character of both dpp-bian ligands. The solution ESR spectrum of 3 reveals the coupling of an unpaired electron with the gallium nuclei (69)Ga and (71)Ga (A((69)Ga)=0.97, A((71)Ga)=1.23 mT), thus confirming the presence of Zn-Ga bonds in solution. According to the results of the X-ray crystal structure analyses the metal-metal bond lengths in 2 (2.3598(3) A) and 3 (2.3531(8) A) are close to that found in 1 (2.3321(2) A). The electronic structures of compounds 2 and 3 were studied by DFT (B3 LYP/6-31G* level). The metal-metal pi bond in 2 is mainly formed by overlap of the p orbitals of Ga in the HOMO and HOMO-1, the latter showing a stronger interaction. The s and p orbitals of Ga overlap in the deeper located HOMO-17 producing a Ga-Ga sigma bond. In contrast to the Zn-Zn bond in 1, which has 95 % s character, the NBO (natural bond order) analysis of 2 reveals 67.8 % s, 32.0 % p, and 0.2 % d character for the Ga-Ga bond. Compound 3 has a doublet electronic ground state. The unpaired electron occupies the alpha HOMO-1 localized at the Zn-containing fragment. The Ga-Zn bond is mainly formed by overlap of the metal orbitals in the alpha HOMO-6 and beta HOMO-5. According to the results of the NBO analysis, the Zn wave functions are responsible for 28.7 % of the Zn-Ga bond, with 96.7 % s, 1.0 % p, and 2.3 % d character.

8.
Chemistry ; 13(15): 4216-22, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17440904

RESUMEN

The reactions of the disodium salt of the 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN) ligand with one equivalent of Me2AlCl in diethyl ether, toluene, and benzene produced the complexes [Na(Et2O)2(dpp-BIAN)AlMe2] (1), [Na(eta6-C7H8)(dpp-BIAN)AlMe2] (2) and [Na(eta6-C6H6)(dpp-BIAN)AlMe2] (3), respectively. Recrystallization of 1 from hexane afforded solvent-free [{Na(dpp-BIAN)AlMe2}n] (4) or [Na(Et2O)(dpp-BIAN)AlMe2] (5) depending on the temperature of the solvent. The molecular structures of 1-5 have been determined by single-crystal X-ray diffraction. The sodium cation coordinates either one of the naphthalene rings (1) or the diimine part of the dpp-BIAN ligand (2-5). In the complexes 2 and 3, the sodium cation additionally coordinates the toluene (2) or benzene molecule (3) in an eta6-fashion.

9.
Dalton Trans ; (3): 342-50, 2007 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-17200754

RESUMEN

Three novel Re(iv) compounds, the mononuclear complex Bu(4)N[ReBr(5)(Hpyzc)] (1) and the heterobimetallic complexes [ReBr(5)(mu-pyzc)M(dmphen)(2)].2CH(3)CN [M = Co (2), Ni (3)] (Hpyzc = 2-pyrazinecarboxylic acid, dmphen = 2,9-dimethyl-1,10-phenanthroline), have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. The structure of 1 consists of [ReBr(5)(Hpyzc)](-) complex anions and tetrabutylammonium cations, Bu(4)N(+). The Re(iv) is surrounded by five bromide anions and a N-donor Hpyzc monodentate ligand, in a distorted octahedral environment. The structures of 2 and 3 consist of dinuclear units [ReBr(5)(mu-pyzc)M(dmphen)(2)], with the metal ions linked by a pyzc bridge ligand, being bidentate toward M(II) and monodentate toward Re(IV). The environment of Re(IV) is the same as in 1, whereas M(II) is six-coordinate, being surrounded by four nitrogen atoms of two bidentate dmphen ligands and one oxygen atom and one nitrogen atom of the pyzc anion. The magnetic properties of 1-3 were investigated in the temperature range 2.0-300 K. 1 shows the expected magnetic behavior for a mononuclear Re(IV) complex with a weak intermolecular antiferromagnetic coupling at low temperatures. The bimetallic complexes exhibit an intramolecular ferromagnetic coupling between Re(IV) and the M(II) ion (Co, Ni).

10.
Chemistry ; 12(16): 4313-20, 2006 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-16528780

RESUMEN

Complex formation between FeX(2)6 H(2)O (X=BF(4) or ClO(4)) and the pyridine-derived tetrapodal tetraphosphane C(5)H(3)N[CMe(CH(2)PMe(2))(2)](2) (1) in methanol proceeds with solvent-induced cleavage of one PMe(2) group. Depending on the reaction temperature and the nature of the counterion, iron(II) is coordinated, in distorted square-pyramidal fashion, by the anionic remainder of the chelating ligand, C(5)H(3)N[CMe(CH(2)PMe(2))(2)][CMe(CH(2)PMe(2))(CH(2) (-))] (NP(3)C(-) donor set: X=BF(4), -50 degrees C: 2; X=ClO(4), RT: 4) or its protonated form C(5)H(3)N[CMe(CH(2)PMe(2))(2)][CMe(CH(2)PMe(2))(CH(3))], in which the methyl group is in agostic interaction with the metal centre (X=BF(4), RT: 3; X=ClO(4), +50 degrees C: 5). A monodentate phosphinite ligand Me(2)POMe, formed from the cleaved PMe(2) group and methanol, completes the coordination octahedron in both cases. Working in CD(3)OD (X=BF(4), RT) gives the deuterium-substituted analogue of 3, with ligands L(CH(2)D) (L=residual chelating ligand) and Me(2)POCD(3). A mechanism for the observed phosphorus-carbon bond cleavage is suggested. Complex 2, when isolated at -50 degrees C, is stable in the solid state even at room temperature. The reaction of 2 in methanol with carbon monoxide (10.5 bar) at elevated temperature forms, in addition to as yet unidentified side products, the carbonyl complex [(1)Fe(CO)](BF(4))(2) (7), in which the previous P--C bond cleavage has been reversed, reforming the original tetrapodal pentadentate NP(4) ligand 1. All compounds have been fully characterised, including X-ray structure analyses in most cases.

11.
Dalton Trans ; (47): 5583-92, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17225895

RESUMEN

The pyridine-derived tetrapodal tetraphosphane C5H3N[CMe(CH2PMe2)2]2 is susceptible to selective protonolysis of a phosphorus-carbon bond in the presence of iron(II) salts. Water produces dimethylphosphinic acid, Me2POH, and protonates the anionic remainder of the tetraphosphane. The resulting iron(II) complexes and (tetrafluoroborate and perchlorate salts, respectively) contain the residual chelate ligand in which a methyl group, derived from the ligand skeleton, is in agostic interaction with the metal centre, and in which Me2POH, unavailable in the free state owing to rapid tautomerisation, is metal-coordinated and thus stabilised. Full NMR details are presented, including 31P simulations. The reactivity towards alcohols is similar (compounds), and has been studied using deuterium labels (NMR). P-C bond cleavage may be suppressed only if all protic agents are rigorously excluded, as in the reaction of with Fe(SO3CF3)2.2CH3CN in acetonitrile solution, which produces the complex [Fe(NCMe)](SO3CF3)2. In it, the ligand acts as an NP4 coordination cap but is severely distorted from square-pyramidal geometry. The reaction of with anhydrous ferrous bromide, FeBr2, in methanol again produces a dimethylphosphinic acid ester ligand, but the complex now contains ferric iron coordinated by a carbanionic residual chelate ligand, implicating H+ as the oxidising agent under these conditions. Full spectroscopic and X-ray structural details are presented for all compounds.

12.
Dalton Trans ; (18): 3108-17, 2005 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16127507

RESUMEN

A series of mixed alkoxyalkoxo chloro complexes of vanadium(V), [VOCl2(OCH2CH2OR)]2 (R = Me, Et, iPr, Bz), [VOCl2(OCMe2CH2OMe)]2 and [VOCl2(OCH2(cyclo-C4H7O)]2, were synthesised and characterised. The title compounds can be obtained either from VOCl3 and the alkoxyalcohols by HCl elimination or from the corresponding lithium alkoxides and VOCl3 by salt metathesis reaction. X-Ray diffraction studies revealed the title compounds to be dimers with chloride bridging ligands and intramolecular ether coordination. Electrochemical results obtained by cyclic voltammetry indicate irreversible, reductive behaviour. The interactions of the title compounds with oxygen, nitrogen and phosphorus donor ligands were examined. Phosphorus and nitrogen donors lead to reduction products whereas tetrahydrofuran coordinates to the vanadium(V) centre by breaking the chloride bridge. All tetrahydrofuran complexes, [VOCl2(OCH2CH2OR)(thf)] (R = Me, Et, iPr) and [VOCl2(OCMe2CH2OMe)(thf)], have been characterised by single-crystal X-ray diffraction. The solid-state structures of these complexes show that they consist of six-coordinate monomers. Reaction of [VOCl2(OCH2CH(2)OMe)]2 with Me3SiCH2MgCl gave [VO(CH2SiMe3)3], which has been structurally characterised. The compounds were tested as catalysts for epoxidation and polymerisation reactions. They convert unfunctionalised olefins into the corresponding epoxides with moderate activity. They are good pre-catalysts for the polymerisation of ethene and oligomerise 1-hexene.


Asunto(s)
Cloruros/química , Compuestos Organometálicos , Óxidos/química , Vanadio/química , Catálisis , Cristalografía por Rayos X , Electroquímica , Ligandos , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química
13.
Chemistry ; 9(23): 5778-83, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14673848

RESUMEN

The reduction of benzophenone with the magnesium complex [(2,6-iPr(2)C(6)H(3)-bian)Mg(thf)(3)] (1), containing the 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene dianion, affords the pinacolato complex [(2,6-iPr(2)C(6)H(3)-bian)Mg(thf)](2)[micro-O(2)C(2)Ph(4)].(C(6)H(6))(4) (2). The reaction of 1 with 9(10H)-anthracenone yields the 9-anthracenolato complex [(2,6-iPr(2)C(6)H(3)-bian)Mg(OC(14)H(9))(thf)(2)] (3). Complexes 2 and 3 were characterized by elemental analyses, UV/Vis, IR, and ESR spectroscopy, as well as by single crystal X-ray diffraction. Complex 2 dissociates in solution with splitting of the bridging pinacolato unit, forming the biradical diimino/ketyl complex [(2,6-iPr(2)C(6)H(3)-bian)Mg(thf)(OCPh(2))].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA