Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 4(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33563652

RESUMEN

Increasing levels of the cold-shock protein, RNA-binding motif 3 (RBM3), either through cooling or by ectopic over-expression, prevents synapse and neuronal loss in mouse models of neurodegeneration. To exploit this process therapeutically requires an understanding of mechanisms controlling cold-induced RBM3 expression. Here, we show that cooling increases RBM3 through activation of TrkB via PLCγ1 and pCREB signaling. RBM3, in turn, has a hitherto unrecognized negative feedback on TrkB-induced ERK activation through induction of its specific phosphatase, DUSP6. Thus, RBM3 mediates structural plasticity through a distinct, non-canonical activation of TrkB signaling, which is abolished in RBM3-null neurons. Both genetic reduction and pharmacological antagonism of TrkB and its downstream mediators abrogate cooling-induced RBM3 induction and prevent structural plasticity, whereas TrkB inhibition similarly prevents RBM3 induction and the neuroprotective effects of cooling in prion-diseased mice. Conversely, TrkB agonism induces RBM3 without cooling, preventing synapse loss and neurodegeneration. TrkB signaling is, therefore, necessary for the induction of RBM3 and related neuroprotective effects and provides a target by which RBM3-mediated synapse-regenerative therapies in neurodegenerative disorders can be used therapeutically without the need for inducing hypothermia.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Neuroprotección , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Frío , Glicoproteínas de Membrana/agonistas , Ratones , Fosforilación , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Priones/metabolismo , Unión Proteica , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura
2.
Nat Commun ; 11(1): 131, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919423

RESUMEN

Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca2+]. Blockade of Ca2+-dependent signaling mechanisms in populations of astrocytes that reside alongside CNS sympathetic control circuits prevents compensatory increases in sympathetic nerve activity, heart rate and arterial blood pressure induced by reductions in cerebral perfusion. These data suggest that astrocytes function as intracranial baroreceptors and play an important role in homeostatic control of arterial blood pressure and brain blood flow.


Asunto(s)
Astrocitos/fisiología , Presión Sanguínea/fisiología , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Frecuencia Cardíaca/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Hemodinámica , Homeostasis , Ratas , Ratas Sprague-Dawley , Sistema Nervioso Simpático/fisiología
3.
Neuron ; 105(5): 855-866.e5, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31924446

RESUMEN

Recent interest in astrocyte activation states has raised the fundamental question of how these cells, normally essential for synapse and neuronal maintenance, become pathogenic. Here, we show that activation of the unfolded protein response (UPR), specifically phosphorylated protein kinase R-like endoplasmic reticulum (ER) kinase (PERK-P) signaling-a pathway that is widely dysregulated in neurodegenerative diseases-generates a distinct reactivity state in astrocytes that alters the astrocytic secretome, leading to loss of synaptogenic function in vitro. Further, we establish that the same PERK-P-dependent astrocyte reactivity state is harmful to neurons in vivo in mice with prion neurodegeneration. Critically, targeting this signaling exclusively in astrocytes during prion disease is alone sufficient to prevent neuronal loss and significantly prolongs survival. Thus, the astrocyte reactivity state resulting from UPR over-activation is a distinct pathogenic mechanism that can by itself be effectively targeted for neuroprotection.


Asunto(s)
Astrocitos/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades por Prión/metabolismo , Sinapsis/metabolismo , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Memoria , Ratones , Fosforilación , Biosíntesis de Proteínas , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Transducción de Señal , Tapsigargina/farmacología , Transcriptoma , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
4.
Brain Res ; 1650: 178-183, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27616338

RESUMEN

Increased activity of the sympathetic nervous system has been highlighted as a key factor that contributes to the development and maintenance of arterial hypertension. However, the factors that precipitate sustained increases in sympathetic activity remain poorly understood. Resting tissue oxygen partial pressure (PtO2) in the brainstem of anesthetized spontaneously hypertensive rats (SHRs) has been shown to be lower than in normotensive rats despite normal levels of arterial PO2. A hypoxic environment in the brainstem has been postulated to activate astroglial signalling mechanisms in the rostral ventrolateral medulla (RVLM) which in turn increase the excitability of presympathetic neuronal networks. In this study, we assessed the expression of indirect markers of tissue hypoxia and astroglial cell activation in the RVLM of SHRs and age-matched normotensive Wistar rats. Immunohistochemical labelling for hypoxia-induced factor-1α (HIF-1α) and bound pimonidazole adducts revealed the presence of tissue hypoxia in the RVLM of SHRs. Double immunostaining showed co-localization of bound pimonidazole labelling in putative presympathetic C1 neurons and in astroglial cells. Quantification of glial fibrillary acidic protein (GFAP) immunofluorescence showed relatively higher number of astrocytes and increased GFAP mean grey value density, whilst semi-quantitative analysis of skeletonized GFAP-immunoreactive processes revealed greater % area covered by astrocytic processes in the RVLM of adult SHRs. In conclusion, the morphological findings of tissue hypoxia and astrogliosis within brainstem presympathetic neuronal networks in the SHR support previous observations, showing that low brainstem PtO2 and increased astroglial signalling in the RVLM play an important role in pathological sympathoexcitation associated with the development of arterial hypertension.


Asunto(s)
Gliosis/metabolismo , Hipoxia/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Presión Sanguínea/fisiología , Tronco Encefálico/metabolismo , Frecuencia Cardíaca , Hipertensión/fisiopatología , Masculino , Bulbo Raquídeo/fisiología , Neuronas/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Sistema Nervioso Simpático/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...