Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 189: 114759, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36857993

RESUMEN

This study provided new data on shell mineralogy in 23 Arctic bivalve species. The majority of examined species had purely aragonitic shells. Furthermore, we measured concentrations of Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Sr and Zn in 542 shells representing 25 Arctic bivalve species. Species-related differences in concentrations of specific elements were significant and occurred regardless of locations and water depths. This observation implies the dominance of biological processes regulating elemental uptake into the skeleton over factors related to the variability of abiotic environmental conditions. Analysis of the present study and literature data revealed that the highest concentrations of metals were observed in bivalves collected in the temperate zone, with intermediate levels in the tropics and the lowest levels in polar regions. This trend was ascribed mainly to the presence of higher anthropogenic pressure at temperate latitudes being a potential source of human-mediated metal pollution.


Asunto(s)
Bivalvos , Oligoelementos , Animales , Humanos , Metales/análisis , Carbonato de Calcio/análisis , Regiones Árticas , Monitoreo del Ambiente , Oligoelementos/análisis
2.
Geobiology ; 20(4): 575-596, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35610771

RESUMEN

Biomineralization is of great importance in ecosystem functioning and for the use of carbonate skeleton as environmental proxies. Skeletal formation is controlled to different degrees by environmental parameters and biological mechanisms. While salinity is one of the most important factors affecting ecological processes and ocean physiochemistry, the goal of this investigation was to identify how salinity influences the mineral type and the concentrations of chemical elements in the whole skeleton of invertebrates from the Baltic Sea. In this model system, the surface salinity decreases from marine values (27.2) to almost fresh water (6.1). The selected organisms, mussels (Mytilus spp.), bryozoans (Einhornia crustulenta, Cribrilina cryptooecium, Cryptosula pallasiana, Electra pilosa, Escharella immersa), barnacles (Amphibalanus improvisus, Semibalanus balanoides), and polychaetes (Spirorbis tridentatus), precipitated skeleton composed of calcite and aragonite, most likely as a result of various interacting environmental and biological factors. The concentrations of all elements in bulk skeleton were highly variable between species from the same location, underlining the role of the biological mechanisms in skeletal formation. The concentration of Ca, Mg, Sr, and Na increased in the bulk skeleton of stenohaline organisms with increasing salinity, while in the bulk skeleton of euryhaline species, only the concentration of Na increased with increasing salinity. The concentrations of Mn, Ba, Cu, Pb, Y, V, Cd, and U in the skeleton of euryhaline species generally decreased at higher salinities, most likely reflecting the lower bioavailability of elements at higher salinity. However, the concentrations of elements in the skeleton of stenohaline organisms were highly variable with no clear salinity impact. This study suggests that, although the composition of skeleton of calcifying organisms along the salinity gradient of the Baltic Sea is to a large extent affected by biological mechanisms, it also reflects the responses to environmental conditions.


Asunto(s)
Ecosistema , Salinidad , Animales , Biomineralización , Carbonato de Calcio , Invertebrados , Agua de Mar/química , Esqueleto
3.
Front Plant Sci ; 13: 778403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444675

RESUMEN

Tropical trees store a large amount of nutrients in their woody tissues, thus triggering the question of what the functional association of these elements with other wood traits is. Given the osmotic activity of mineral elements such as potassium, sodium, and calcium, these elements should be strong candidates in mediating the water storing capacity in tropical trees. We investigated the role of wood nutrients in facilitating wood water storage in trees by using branch samples from 48 tropical tree species in South America and examined their associations with wood density (ρ). Wood density varied from 316 kg/m3 in Peru plots, where the soil nutrient status is relatively higher, to 908 kg/m3 in Brazil plots, where the nutrient availability is lower. Phosphorus content in wood varied significantly between plots with lowest values found in French Guiana (1.2 mol/m3) and plots with highest values found in Peru (43.6 mol/m3). Conversely, potassium in woody tissues showed a significant cross-species variation with Minquartia guianensis in Brazil showing the lowest values (8.8 mol/m3) and with Neea divaricata in Peru having the highest values (114 mol/m3). We found that lower wood density trees store more water in their woody tissues with cations, especially potassium, having a positive association with water storage. Specific relationships between wood cation concentrations and stem water storage potential nevertheless depend on both species' identity and growing location. Tropical trees with increased water storage capacity show lower wood density and have an increased reliance on cations to regulate this reservoir. Our study highlights that cations play a more important role in tropical tree water relations than has previously been thought, with potassium being particularly important.

4.
Mar Pollut Bull ; 151: 110876, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32056652

RESUMEN

Mobile marine predators, such as seabirds, are frequently used as broad samplers of contaminants that are widespread in the marine environment. The Timor Sea off remote Western Australia is a poorly studied, yet rapidly expanding area of offshore development. To provide much needed data on contamination in this region, we quantified trace element concentrations in breast feathers of three seabird species breeding on Bedout Island. While adult Masked Boobies Sula dactylatra exhibited some of the highest concentrations, values for all species were below toxicology thresholds for seabirds and were comparable to those reported in other closely related species. The low concentrations detected in the birds provide a valuable baseline and suggest that the local marine environment around Bedout is in relatively good condition. However, careful monitoring is warranted in light increasing anthropogenic activity in this region.


Asunto(s)
Aves , Monitoreo del Ambiente , Plumas , Oligoelementos , Animales , Cruzamiento , Indonesia , Islas , Australia Occidental
5.
Front Plant Sci ; 10: 877, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333710

RESUMEN

Bivariate relationships between plant tissue nutrient concentration have largely been studied across broad environmental scales regardless of their covariation with soil and climate. Comparing leaf and branch wood concentrations of C, Ca, K, Mg, N, Na, and P for trees growing in tropical forests in Amazonia and Australia we found that the concentrations of most elements varied with sampling location, but with foliar and branch woody tissues varying from site to site in different ways. Using a Mixed Effect Model (MEM) approach it was further found that relationships between branch and leaf concentrations within individual plots differed in terms of both slope and/or significance to the ordinary least squares (OLS) estimates for most elements. Specifically, using MEM we found that within plots only K and Mg were correlated across organs, but with the K cross-organ intercept estimates varying significantly between sites. MEM analyses further showed that within-plot wood density variations were also negatively related to wood K and Na, suggesting a potentially important role for these cations in water transport and/or storage in woody tissues. The OLS method could not detect significant correlations in any of the above cases. By contrast, although Ca, N, and P leaf and wood tissue concentrations showed similar patterns when individual elements were compared across sites, MEM analyses suggested no consistent association within sites. Thus, for all these three elements, strong within-tree scaling relationships were inferred when data were analyzed across sites using OLS, even though there was no relationship within individual sites. Thus (as for Ca, N, and P) not only can a pooling of data across sites result in trait (co)variations attributable to the environment potentially being incorrectly attributed solely to the species and/or individual (the so-called "ecological fallacy"), but in some cases (as was found here for K and Na) the opposite can also sometimes occur with significant within-site covariations being obscured by large site-site variations. We refer to the latter phenomenon as "environmental obfuscation."

6.
Environ Monit Assess ; 189(4): 197, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28361486

RESUMEN

Mussels have the ability to control biomineral production and chemical composition, producing shells with a range of functions. In addition to biological control, the environment also seems to influence the process of biomineralization; thus, shells can be used as archives of ambient water parameters during the calcium carbonate deposition. Past and present environmental conditions are recorded in the shells in the form of various proxies including Mg/Ca or Sr/Ca ratios. For such proxies to be accurate and robust, the influence of biological effects including the size of studied organism must be examined and eliminated or minimized, so that the environmental signal can be efficiently extracted. This study considers mineralogy and elemental composition of shells representing four size classes of Mytilus trossulus from the Baltic Sea. Obtained results suggest that mineralogy and chemical composition change throughout the shell development due to most likely a combination of environmental and biological factors. The content of aragonite increases with increasing shell size, while the bulk concentrations of Na, Cd, Cu, U, V, Zn and Pb were found to decrease with increasing height of the shells. Therefore, using mussels for environmental monitoring requires analysis of individuals in the same size range.


Asunto(s)
Monitoreo del Ambiente/métodos , Mytilus/química , Contaminantes Químicos del Agua/análisis , Animales , Países Bálticos
7.
Environ Sci Technol ; 51(1): 98-107, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27750003

RESUMEN

The stable isotope signatures of zinc and other metals are increasingly used to study plant and soil processes. Complexation with phytosiderophores is a key reaction and understanding the controls of isotope fractionation is central to such studies. Here, we investigated isotope fractionation during complexation of Zn2+ with the phytosiderophore 2'-deoxymugeneic acid (DMA), and with three commercially available structural analogues of DMA: EDTA, TmDTA, and CyDTA. We used ion exchange chromatography to separate free and complexed zinc, and identified appropriate cation exchange resins for the individual systems. These were Chelex-100 for EDTA and CyDTA, Amberlite CG50 for TmDTA and Amberlite IR120 for DMA. With all the ligands we found preferential partitioning of isotopically heavy zinc in the complexed form, and the extent of fractionation was independent of the Zn:ligand ratio used, indicating isotopic equilibrium and that the results were not significantly affected by artifacts during separation. The fractionations (in ‰) were +0.33 ± 0.07 (1σ, n = 3), + 0.45 ± 0.02 (1σ, n = 2), + 0.62 ± 0.05 (1σ, n = 3) and +0.30 ± 0.07 (1σ, n = 4) for EDTA, TmDTA, CyDTA, and DMA, respectively. Despite the similarity in Zn-coordinating donor groups, the fractionation factors are significantly different and extent of fractionation seems proportional to the complexation stability constant. The extent of fractionation with DMA agreed with observed fractionations in zinc uptake by paddy rice in field experiments, supporting the possible involvement of DMA in zinc uptake by rice.


Asunto(s)
Isótopos de Zinc/química , Zinc/química , Fraccionamiento Químico , Isótopos , Suelo
8.
Nat Commun ; 7: 12921, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27678297

RESUMEN

Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.

9.
Metallomics ; 7(1): 112-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25489714

RESUMEN

An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Mama/química , Cobre/análisis , Isótopos de Zinc/análisis , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Mama/química , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Cobre/sangre , Cobre/metabolismo , Femenino , Humanos , Masculino , Isótopos de Zinc/sangre , Isótopos de Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...