Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 16(1): 2380061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39078050

RESUMEN

Cancer immunotherapy has been regarded as a promising strategy for cancer therapy by blocking immune checkpoints and evoking immunity to fight cancer, but its efficacy seems to be heterogeneous among patients. Manipulating the gut microbiota is a potential strategy for enhancing the efficacy of immunotherapy. Here, we report that MS-20, also known as "Symbiota®", a postbiotic that comprises abundant microbial metabolites generated from a soybean-based medium fermented with multiple strains of probiotics and yeast, inhibited colon and lung cancer growth in combination with an anti-programmed cell death 1 (PD1) antibody in xenograft mouse models. Mechanistically, MS-20 remodeled the immunological tumor microenvironment by increasing effector CD8+ T cells and downregulating PD1 expression, which were mediated by the gut microbiota. Fecal microbiota transplantation (FMT) from mice receiving MS-20 treatment to recipient mice increased CD8+ T-cell infiltration into the tumor microenvironment and significantly improved antitumor activity when combined with anti-PD1 therapy. Notably, the abundance of Ruminococcus bromii, which increased following MS-20 treatment, was positively associated with a reduced tumor burden and CD8+ T-cell infiltration in vivo. Furthermore, an ex vivo study revealed that MS-20 could alter the composition of the microbiota in cancer patients, resulting in distinct metabolic pathways associated with favorable responses to immunotherapy. Overall, MS-20 could act as a promising adjuvant agent for enhancing the efficacy of immune checkpoint-mediated antitumor therapy.


Asunto(s)
Linfocitos T CD8-positivos , Microbioma Gastrointestinal , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral , Animales , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Humanos , Microambiente Tumoral/inmunología , Linfocitos T CD8-positivos/inmunología , Trasplante de Microbiota Fecal , Línea Celular Tumoral , Probióticos/administración & dosificación , Probióticos/farmacología , Inmunoterapia , Femenino , Neoplasias del Colon/inmunología , Neoplasias del Colon/terapia , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/microbiología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Food Sci Nutr ; 12(4): 2346-2363, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628176

RESUMEN

A safety evaluation was performed of Symbiota®, which is made by a proprietary anaerobic fermentation process of soybean with multistrains of probiotics and a yeast. The battery of genotoxicity studies showed that Symbiota® has no genotoxic effects. Safety and tolerability were further assessed by acute or repeated dose 28- and 90-day rodent studies, and no alterations in clinical observations, ophthalmological examination, blood chemistry, urinalysis, or hematology were observed between the control group and the different dosing groups (1.5, 5, and 15 mL/kg/day). There were no adverse effects on specific tissues or organs in terms of weight and histopathology. Importantly, the Symbiota® treatment did not perturb hormones and other endocrine-related endpoints. Of note, the No-Observed-Adverse-Effect-Level was determined to be 15 mL/kg/day in rats. Moreover, a randomized, double-blind, placebo-controlled clinical trial was recently conducted with healthy volunteers who consumed 8 mL/day of placebo or Symbiota® for 8 weeks. Only mild adverse events were reported in both groups, and the blood chemistry and blood cell profiles were also similar between the two groups. In summary, this study concluded that the oral consumption of Symbiota® at 8 mL/day by the general population does not pose any human health concerns.

3.
Pharmaceutics ; 14(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36297499

RESUMEN

Diabetic foot ulcers (DFUs) are one of the most costly and troublesome complications of diabetes mellitus. The wound chronicity of DFUs remains the main challenge in the current and future treatment of this condition. Persistent inflammation results in chronic wounds characterized by dysregulation of immune cells, such as M1 macrophages, and impairs the polarization of M2 macrophages and the subsequent healing process of DFUs. The interactive regulation of M1 and M2 macrophages during DFU healing is critical and seems manageable. This review details how cytokines and signalling pathways are co-ordinately regulated to control the functions of M1 and M2 macrophages in normal wound repair. DFUs are defective in the M1-to-M2 transition, which halts the whole wound-healing machinery. Many pre-clinical and clinical innovative approaches, including the application of topical insulin, CCL chemokines, micro RNAs, stem cells, stem-cell-derived exosomes, skin substitutes, antioxidants, and the most recent Phase III-approved ON101 topical cream, have been shown to modulate the activity of M1 and M2 macrophages in DFUs. ON101, the newest clinically approved product in this setting, is designed specifically to down-regulate M1 macrophages and further modulate the wound microenvironment to favour M2 emergence and expansion. Finally, the recent evolution of macrophage modulation therapies and techniques will improve the effectiveness of the treatment of diverse DFUs.

4.
Sci Adv ; 7(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33827825

RESUMEN

The serine/threonine kinase ULK1 mediates autophagy initiation in response to various cellular stresses, and genetic deletion of ULK1 leads to accumulation of damaged mitochondria. Here we identify Parkin, the core ubiquitin ligase in mitophagy, and PARK2 gene product mutated in familial Parkinson's disease, as a ULK1 substrate. Recent studies uncovered a nine residue ("ACT") domain important for Parkin activation, and we demonstrate that AMPK-dependent ULK1 rapidly phosphorylates conserved serine108 in the ACT domain in response to mitochondrial stress. Phosphorylation of Parkin Ser108 occurs maximally within five minutes of mitochondrial damage, unlike activation of PINK1 and TBK1, which is observed thirty to sixty minutes later. Mutation of the ULK1 phosphorylation sites in Parkin, genetic AMPK or ULK1 depletion, or pharmacologic ULK1 inhibition, all lead to delays in Parkin activation and defects in assays of Parkin function and downstream mitophagy events. These findings reveal an unexpected first step in the mitophagy cascade.

5.
Cell Rep ; 33(1): 108223, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027655

RESUMEN

Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.


Asunto(s)
Tejido Adiposo Blanco/fisiopatología , Metabolismo de los Lípidos/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Obesidad/fisiopatología , Grasa Subcutánea/fisiopatología , Animales , Humanos , Ratones
6.
Mol Cell Proteomics ; 19(7): 1104-1119, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32234964

RESUMEN

Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-min time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation because of chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR.


Asunto(s)
Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Insulina/farmacocinética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Animales , Cromatografía Liquida , Técnicas de Inactivación de Genes , Ontología de Genes , Glucólisis/efectos de los fármacos , Insulina/metabolismo , Lipogénesis/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Fosforilación , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Masas en Tándem
7.
Cell Rep ; 29(10): 3331-3348.e7, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801093

RESUMEN

Metformin is the front-line treatment for type 2 diabetes worldwide. It acts via effects on glucose and lipid metabolism in metabolic tissues, leading to enhanced insulin sensitivity. Despite significant effort, the molecular basis for metformin response remains poorly understood, with a limited number of specific biochemical pathways studied to date. To broaden our understanding of hepatic metformin response, we combine phospho-protein enrichment in tissue from genetically engineered mice with a quantitative proteomics platform to enable the discovery and quantification of basophilic kinase substrates in vivo. We define proteins whose binding to 14-3-3 are acutely regulated by metformin treatment and/or loss of the serine/threonine kinase, LKB1. Inducible binding of 250 proteins following metformin treatment is observed, 44% of which proteins bind in a manner requiring LKB1. Beyond AMPK, metformin activates protein kinase D and MAPKAPK2 in an LKB1-independent manner, revealing additional kinases that may mediate aspects of metformin response. Deeper analysis uncovered substrates of AMPK in endocytosis and calcium homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Metformina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Calcio/metabolismo , Línea Celular , Endocitosis/efectos de los fármacos , Células HEK293 , Homeostasis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos
8.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442424

RESUMEN

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólisis , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Sirtuinas/metabolismo , Adipocitos Marrones/citología , Animales , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Sirtuinas/genética
9.
Trends Cell Biol ; 26(5): 313-326, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26874575

RESUMEN

The global incidence of obesity and its comorbidities continues to rise along with a demand for novel therapeutic interventions. Brown adipose tissue (BAT) is attracting attention as a therapeutic target because of its presence in adult humans and high capacity to dissipate energy as heat, and thus burn excess calories, when stimulated. Another potential avenue for therapeutic intervention is to induce, within white adipose tissue (WAT), the formation of brown-like adipocytes called brite (brown-like-in-white) or beige adipocytes. However, understanding how to harness the potential of these thermogenic cells requires a deep understanding of their developmental origins and regulation. Recent cell-labeling and lineage-tracing experiments are beginning to shed light on this emerging area of adipocyte biology. We review here adipocyte development, giving particular attention to thermogenic adipocytes.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Animales , Linaje de la Célula , Humanos , Modelos Biológicos , Especificidad de Órganos , Células Madre/citología
10.
Cell Rep ; 8(1): 256-71, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25001283

RESUMEN

The in vivo functions of mechanistic target of rapamycin complex 2 (mTORC2) and the signaling mechanisms that control brown adipose tissue (BAT) fuel utilization and activity are not well understood. Here, by conditionally deleting Rictor in the Myf5 lineage, we provide in vivo evidence that mTORC2 is dispensable for skeletal muscle development and regeneration but essential for BAT growth. Furthermore, deleting Rictor in Myf5 precursors shifts BAT metabolism to a more oxidative and less lipogenic state and protects mice from obesity and metabolic disease at thermoneutrality. We additionally find that Rictor is required for brown adipocyte differentiation in vitro and that the mechanism specifically requires AKT1 hydrophobic motif phosphorylation but is independent of pan-AKT signaling and is rescued with BMP7. Our findings provide insights into the signaling circuitry that regulates brown adipocytes and could have important implications for developing therapies aimed at increasing energy expenditure as a means to combat human obesity.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis , Proteínas Portadoras/metabolismo , Metabolismo Energético , Complejos Multiproteicos/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Obesidad/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteína Morfogenética Ósea 7/metabolismo , Proteínas Portadoras/genética , Linaje de la Célula , Células Cultivadas , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Factor 5 Regulador Miogénico/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal , Termogénesis
11.
Artículo en Inglés | MEDLINE | ID: mdl-23124837

RESUMEN

The mechanistic target of rapamycin (mTOR) kinase is a conserved regulator of cell growth, proliferation, and survival. In cells, mTOR is the catalytic subunit of two complexes called mTORC1 and mTORC2, which have distinct upstream regulatory signals and downstream substrates. mTORC1 directly senses cellular nutrient availability while indirectly sensing circulating nutrients through growth factor signaling pathways. Cellular stresses that restrict growth also impinge on mTORC1 activity. mTORC2 is less well understood and appears only to sense growth factors. As an integrator of diverse growth regulatory signals, mTOR evolved to be a central signaling hub for controlling cellular metabolism and energy homoeostasis, and defects in mTOR signaling are important in the pathologies of cancer, diabetes, and aging. Here we discuss mechanisms by which each mTOR complex might regulate cell survival in response to metabolic and other stresses.


Asunto(s)
Autofagia/fisiología , Procesos de Crecimiento Celular/fisiología , Supervivencia Celular/fisiología , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Neoplasias/tratamiento farmacológico , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
12.
Cell Metab ; 16(3): 348-62, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22940198

RESUMEN

The developmental origin of adipose tissue and what controls its distribution is poorly understood. By lineage tracing and gene expression analysis in mice, we provide evidence that mesenchymal precursors expressing Myf5--which are thought to give rise only to brown adipocytes and skeletal muscle--also give rise to a subset of white adipocytes. Furthermore, individual brown and white fats contain a mixture of adipocyte progenitor cells derived from Myf5(+) and Myf5(neg) lineages, the number of which varies with depot location. Subsets of white adipocytes originating from both Myf5(+) and Myf5(neg) precursors respond to ß(3)-adrenoreceptor stimulation, suggesting "brite" adipocytes may also have multiple origins. We additionally find that deleting PTEN with myf5-cre causes lipomatosis and partial lipodystrophy by selectively expanding the Myf5(+) adipocyte lineages. Thus, the spectrum of adipocytes arising from Myf5(+) precursors is broader than previously thought, and differences in PI3K activity between adipocyte lineages alter body fat distribution.


Asunto(s)
Adipocitos Blancos/citología , Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Fosfohidrolasa PTEN/deficiencia , Fosfatidilinositol 3-Quinasas/metabolismo , Adipocitos Blancos/metabolismo , Animales , Proteínas Bacterianas , Distribución de la Grasa Corporal , Citometría de Flujo , Técnicas Histológicas , Lipomatosis/metabolismo , Proteínas Luminiscentes , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Adrenérgicos beta 3/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Biol Chem ; 282(30): 21962-72, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17545167

RESUMEN

Tribbles, an atypical protein kinase superfamily member, coordinates cell proliferation, migration, and morphogenesis during the development of Drosophila and Xenopus embryos. Although Tribbles are highly conserved throughout evolution, the physiological functions of mammalian Tribbles family remain largely unclear. Here we report that human TRB2 is a pro-apoptotic molecule that induces apoptosis of cells mainly of the hematopoietic origin. TRB2 mRNA is selectively induced by removal of granulocyte macrophage colony-stimulating factor (GM-CSF) or interleukin-2 from human erythroleukemia-derived TF-1 cell line or activated primary CD4(+) T cells, respectively. It is, however, not induced by many other treatments that trigger apoptosis of these two cell types. Overexpression of TRB2 activates many apoptotic events observed in GM-CSF-deprived TF-1 cells, including loss of mitochondrial membrane potential, Mcl-1 cleavage/degradation, and activation of Bax and a number of caspases. Specific knockdown of TRB2 significantly suppresses GM-CSF deprivation-induced apoptosis and all apoptotic events mentioned above. Finally, we demonstrate that TRB2-induced cleavage and degradation of Mcl-1 are mediated via a caspase-dependent but proteasome-independent mechanism, and overexpression of Mcl-1 or its upstream activator Akt can markedly overcome the apoptogenic effect of TRB2. Altogether, these results suggest that the TRB2-Mcl-1 axis plays an important role in survival factor withdrawal-induced apoptosis of TF-1 cells.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Apoptosis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Linfocitos T CD4-Positivos/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Citocinas/fisiología , Técnicas de Transferencia de Gen , Genes Reporteros , Vectores Genéticos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/deficiencia , Células HeLa , Humanos , Interleucina-2/deficiencia , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA