Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Huntingtons Dis ; 10(1): 165-173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579859

RESUMEN

The use of genome wide association studies (GWAS) in Huntington's disease (HD) research, driven by unbiased human data analysis, has transformed the focus of new targets that could affect age at onset. While there is a significant depth of information on DNA damage repair, with many drugs and drug targets, most of this development has taken place in the context of cancer therapy. DNA damage repair in neurons does not rely on DNA replication correction mechanisms. However, there is a strong connection between DNA repair and neuronal metabolism, mediated by nucleotide salvaging and the poly ADP-ribose (PAR) response, and this connection has been implicated in other age-onset neurodegenerative diseases. Validation of leads including the mismatch repair protein MSH3, and interstrand cross-link repair protein FAN1, suggest the mechanism is driven by somatic CAG instability, which is supported by the protective effect of CAA substitutions in the CAG tract. We currently do not understand: how somatic instability is triggered; the state of DNA damage within expanding alleles in the brain; whether this damage induces mismatch repair and interstrand cross-link pathways; whether instability mediates toxicity, and how this relates to human ageing. We discuss DNA damage pathways uncovered by HD GWAS, known roles of other polyglutamine disease proteins in DNA damage repair, and a panel of hypotheses for pathogenic mechanisms.


Asunto(s)
Reparación del ADN/genética , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica/genética , Enfermedad de Huntington/genética , Ataxias Espinocerebelosas/genética , Humanos
2.
J Biol Chem ; 294(6): 1915-1923, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30538129

RESUMEN

Huntington's disease (HD) is a neurodegenerative, age-onset disorder caused by a CAG DNA expansion in exon 1 of the HTT gene, resulting in a polyglutamine expansion in the huntingtin protein. Nuclear accumulation of mutant huntingtin is a hallmark of HD, resulting in elevated mutant huntingtin levels in cell nuclei. Huntingtin is normally retained at the endoplasmic reticulum via its N17 amphipathic α-helix domain but is released by oxidation of Met-8 during reactive oxygen species (ROS) stress. Huntingtin enters the nucleus via an importin ß1- and 2-dependent proline-tyrosine nuclear localization signal (PY-NLS), which has a unique intervening sequence in huntingtin. Here, we have identified the high-mobility group box 1 (HMGB1) protein as an interactor of the intervening sequence within the PY-NLS. Nuclear levels of HMGB1 positively correlated with varying levels of nuclear huntingtin in both HD and normal human fibroblasts. We also found that HMGB1 interacts with the huntingtin N17 region and that this interaction is enhanced by the presence of ROS and phosphorylation of critical serine residues in the N17 region. We conclude that HMGB1 is a huntingtin N17/PY-NLS ROS-dependent interactor, and this protein bridging is essential for relaying ROS sensing by huntingtin to its nuclear entry during ROS stress. ROS may therefore be a critical age-onset stress that triggers nuclear accumulation of mutant huntington in Huntington's disease.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteína HMGB1/fisiología , Proteína Huntingtina/metabolismo , Especies Reactivas de Oxígeno/farmacología , Sitios de Unión , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Proteína Huntingtina/efectos de los fármacos , Proteína Huntingtina/fisiología , Señales de Localización Nuclear , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica
3.
Proc Natl Acad Sci U S A ; 115(30): E7081-E7090, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987005

RESUMEN

The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.


Asunto(s)
Adenina , Aductos de ADN/metabolismo , Daño del ADN , Enfermedad de Huntington/tratamiento farmacológico , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos , Adenina/análogos & derivados , Adenina/farmacocinética , Adenina/farmacología , Adenina Fosforribosiltransferasa/genética , Adenina Fosforribosiltransferasa/metabolismo , Animales , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Línea Celular Transformada , Aductos de ADN/genética , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Neuronas/patología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Transducción de Señal/genética
4.
Hum Mol Genet ; 26(2): 395-406, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28017939

RESUMEN

Huntington's disease (HD) is an age-dependent neurodegenerative disease. DNA repair pathways have recently been implicated as the most predominant modifiers of age of onset in HD patients. We report that endogenous huntingtin protein directly participates in oxidative DNA damage repair. Using novel chromobodies to detect endogenous human huntingtin in live cells, we show that localization of huntingtin to DNA damage sites is dependent on the kinase activity of ataxia telangiectasia mutated (ATM) protein. Super-resolution microscopy and biochemical assays revealed that huntingtin co-localizes with and scaffolds proteins of the DNA damage response pathway in response to oxidative stress. In HD patient fibroblasts bearing typical clinical HD allele lengths, we demonstrate that there is deficient oxidative DNA damage repair. We propose that DNA damage in HD is caused by dysfunction of the mutant huntingtin protein in DNA repair, and accumulation of DNA oxidative lesions due to elevated reactive oxygen species may contribute to the onset of HD.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Estrés Oxidativo/genética , Alelos , Daño del ADN/genética , Reparación del ADN/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Especies Reactivas de Oxígeno/metabolismo
5.
Cell Rep ; 17(7): 1892-1904, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27829159

RESUMEN

The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs). DIX domain containing 1 (DIXDC1) has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.


Asunto(s)
Dendritas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación/genética , Animales , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/metabolismo , Mutación Missense/genética , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/metabolismo
6.
Hum Mol Genet ; 23(9): 2324-38, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24334607

RESUMEN

Huntington's disease (HD) is an autosomal dominant, neurodegenerative disorder that can be characterized by the presence of protein inclusions containing mutant huntingtin within a subset of neurons in the brain. Since their discovery, the relevance of inclusions to disease pathology has been controversial. We show using super-resolution fluorescence imaging and Förster resonance energy transfer (FRET) in live cells, that mutant huntingtin fragments can form two morphologically and conformationally distinct inclusion types. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that the two huntingtin inclusion types have unique dynamic properties. The ability to form one or the other type of inclusion can be influenced by the phosphorylation state of serine residues at amino acid positions 13 and 16 within the huntingtin protein. We can define two types of inclusions: fibrillar, which are tightly packed, do not exchange protein with the soluble phase, and result from phospho-modification at serines 13 and 16 of the N17 domain, and globular, which are loosely packed, can readily exchange with the soluble phase, and are not phosphorylated in N17. We hypothesize that the protective effect of N17 phosphorylation or phospho-mimicry seen in animal models, at the level of protein inclusions with elevated huntingtin levels, is to induce a conformation of the huntingtin amino-terminus that causes fragments to form tightly packed inclusions that do not exit the insoluble phase, and hence exert less toxicity. The identification of these sub-types of huntingtin inclusions could allow for drug discovery to promote protective inclusions of mutant huntingtin protein in HD.


Asunto(s)
Enfermedad de Huntington/metabolismo , Cuerpos de Inclusión/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Proteína Huntingtina , Ratones , Fosforilación , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...