Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202406497, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031496

RESUMEN

Heteroatom-embedded helical nanographenes (NGs) constitute an important and appealing class of intrinsically chiral materials. In this work, a series of B,N-embedded helical NGs bearing azepines was synthesized via stepwise regioselective cyclodehydrogenation. First, the phenyl- or nitrogen-bridged dimers were efficiently clipped into highly congested model compounds 1 and 2. Later, the controllable Scholl reactions of the tetraphenyl-tethered precursor generated 1, 7 or 8 new C‒C bonds, thereby establishing a robust method for the preparation of nonalternant BN-HNGs with up to 31 fused rings. The helical bilayer nature was unambiguously verified by X-ray diffraction analysis. The helical chirality was transferred to the stereogenic boron centers upon fluoride coordination, with a concave-concave structure to comply with the bilayer skeleton. Notably, the largest nonalternant BN-HNG (6) spontaneously resolved into a homochiral 41 helix structure as a molecular spiral staircase during crystallization via conglomerate formation at the single-crystal scale. The large twisted C2-symmetric pi-surface and the dynamic chiral skeleton induced by curved azepines might have synergistic effects on self-recognition of enantiomers of 6 to achieve the intriguing spontaneous resolution behavior. The chiroptical properties of the enantiomer of 6 were further investigated, revealing that 6 had a strong chiroptical response in the visible range (400-700 nm).

2.
J Am Chem Soc ; 146(23): 16161-16172, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38720418

RESUMEN

Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.

3.
Adv Sci (Weinh) ; 11(26): e2309883, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38687196

RESUMEN

The design of high-entropy single-atom catalysts (HESAC) with 5.2 times higher entropy compared to single-atom catalysts (SAC) is proposed, by using four different metals (FeCoNiRu-HESAC) for oxygen reduction reaction (ORR). Fe active sites with intermetallic distances of 6.1 Å exhibit a low ORR overpotential of 0.44 V, which originates from weakening the adsorption of OH intermediates. Based on density functional theory (DFT) findings, the FeCoNiRu-HESAC with a nitrogen-doped sample were synthesized. The atomic structures are confirmed with X-ray photoelectron spectroscopy (XPS), X-ray absorption (XAS), and scanning transmission electron microscopy (STEM). The predicted high catalytic activity is experimentally verified, finding that FeCoNiRu-HESAC has overpotentials of 0.41 and 0.37 V with Tafel slopes of 101 and 210 mVdec-1 at the current density of 1 mA cm-2 and the kinetic current densities of 8.2 and 5.3 mA cm-2, respectively, in acidic and alkaline electrolytes. These results are comparable with Pt/C. The FeCoNiRu-HESAC is used for Zinc-air battery applications with an open circuit potential of 1.39 V and power density of 0.16 W cm-2. Therefore, a strategy guided by DFT is provided for the rational design of HESAC which can be replaced with high-cost Pt catalysts toward ORR and beyond.

4.
J Comput Chem ; 45(6): 321-330, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37861354

RESUMEN

Cyclometalated Pt(II) complexes are popular phosphorescent emitters with color-tunable emissions. To render their practical applications as organic light-emitting diodes emitters, it is required to develop Pt(II) complexes with high radiative decay rate constant and photoluminescence (PL) quantum yield. Here, a general protocol is developed for accurate predictions of emission wavelength, radiative decay rate constant, and PL quantum yield based on the combination of first-principles quantum mechanical method, machine learning, and experimental calibration. A new dataset concerning phosphorescent Pt(II) emitters is constructed, with more than 200 samples collected from the literature. Features containing pertinent electronic properties of the complexes are chosen and ensemble learning models combined with stacking-based approaches exhibit the best performance, where the values of squared correlation coefficients are 0.96, 0.81, and 0.67 for the predictions of emission wavelength, PL quantum yield and radiative decay rate constant, respectively. The accuracy of the protocol is further confirmed using 24 recently reported Pt(II) complexes, which demonstrates its reliability for a broad palette of Pt(II) emitters.

5.
Angew Chem Int Ed Engl ; 61(52): e202213392, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36288083

RESUMEN

Acceleration of singlet-triplet intersystem crossings (ISC) is instrumental in bolstering triplet exciton harvesting of multi-resonance thermally activated delayed fluorescent (MR-TADF) emitters. This work describes a simple gold(I) coordination strategy to enhance the spin-orbit coupling of green and blue BN(O)-based MR-TADF emitters, which results in a notable increase in rate constants of the spectroscopically observed ISC process to 3×109  s-1 with nearly unitary ISC quantum yields. Accordingly, the resultant thermally-stable AuI emitters attained large values of delayed fluorescence radiative rate constant up to 1.3×105 /1.7×105  s-1 in THF/PMMA film while preserving narrowband emissions (FWHM=30-37 nm) and high emission quantum yields (ca. 0.9). The vapor-deposited ultrapure-green OLEDs fabricated with these AuI emitters delivered high luminance of up to 2.53×105  cd m-2 as well as external quantum efficiencies of up to 30.3 % with roll-offs as low as 0.8 % and long device lifetimes (LT60 ) of 1210 h at 1000 cd m-2 .

6.
Angew Chem Int Ed Engl ; 61(33): e202203982, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35647660

RESUMEN

A critical step in advancing the practical application of copper-based organic light-emitting diodes (OLEDs) is to bridge the large gap between device efficiency and operational stability at practical luminance. Described is a panel of air- and thermally stable two-coordinate CuI emitters featuring bulky pyrazine- (PzIPr) or pyridine-fused N-heterocyclic carbene (PyIPr*) and carbazole (Cz) ligands with enhanced amide-Cu-carbene bonding interactions. These CuI emitters display thermally activated delayed fluorescence (TADF) from the 1 LL'CT(Cz→PzIPr/PyIPr*) excited states across the blue to red regions with exceptional radiative rate constants of 1.1-2.2×106  s-1 . Vapour-deposited OLEDs based on these CuI emitters showed excellent external quantum efficiencies and luminance up to 23.6 % and 222 200 cd m-2 , respectively, alongside record device lifetimes (LT90 ) up to 1300 h at 1000 cd m-2 under our laboratory conditions, highlighting the practicality of the CuI -TADF emitters.

7.
Chem Sci ; 9(8): 2357-2364, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29719708

RESUMEN

Pincer platinum(ii) complexes are well documented to exhibit weak intermolecular interactions in the solid state and 77 K glassy solutions, leading to emissive triplet metal-metal-to-ligand charge transfer (3MMLCT) excited states that often vanish in dilute solutions. In this work, metal-organic framework (MOF) materials are introduced to provide a "solid solution" environment for easy access to 3MMLCT excited states of pincer platinum(ii) complexes. Phosphorescent composites PtII@MOFs (1-4) with matrix-dependent monomers and oligomer emission properties were obtained. These PtII@MOFs are efficient catalysts for photoinduced dehydrogenation reactions.

8.
Chem Asian J ; 12(1): 145-158, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27797451

RESUMEN

Two classes of cationic palladium(II) acetylide complexes containing pincer-type ligands, 2,2':6',2''-terpyridine (terpy) and 2,6-bis(1-butylimidazol-2-ylidenyl)pyridine (C^N^C), were prepared and structurally characterized. Replacing terpy with the strongly σ-donating C^N^C ligand with two N-heterocyclic carbene (NHC) units results in the PdII acetylide complexes displaying phosphorescence at room temperature and stronger intermolecular interactions in the solid state. X-ray crystal structures of [Pd(terpy)(C≡CPh)]PF6 (1) and [Pd(C^N^C)(C≡CPh)]PF6 (7) reveal that the complex cations are arranged in a one-dimensional stacking structure with pair-like PdII ⋅⋅⋅PdII contacts of 3.349 Šfor 1 and 3.292 Šfor 7. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were used to examine the electronic properties. Comparative studies of the [Pt(L)(C≡CPh)]+ analogs by 1 H NMR spectroscopy shed insight on the intermolecular interactions of these PdII acetylide complexes. The strong Pd-Ccarbene bonds render 7 and its derivative sufficiently stable for investigation of photo-cytotoxicity under cellular conditions.


Asunto(s)
Complejos de Coordinación/farmacología , Paladio/farmacología , Fármacos Fotosensibilizantes/farmacología , Piridinas/farmacología , Teoría Cuántica , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Paladio/química , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Piridinas/química , Relación Estructura-Actividad
9.
Chemistry ; 20(28): 8604-14, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24957269

RESUMEN

A new class of cyclometalated Au(III) complexes containing various bidentate C-deprotonated C^N and cis-chelating bis(N-heterocyclic carbene) (bis-NHC) ligands has been synthesized and characterized. These are the first examples of Au(III) complexes supported by cis-chelating bis-NHC ligands. [Au(C^N)(bis-NHC)] complexes display emission in solutions under degassed condition at room temperature with emission maxima (λmax ) at 498-633 nm and emission quantum yields of up to 10.1 %. The emissions are assigned to triplet intraligand (IL) π→π* transitions of C^N ligands. The Au(III) complex containing a C^N (C-deprotonated naphthalene-substituted quinoline) ligand with extended π-conjugation exhibits prompt fluorescence and phosphorescence of comparable intensity with λmax at 454 and 611 nm respectively. With sulfonate-functionalized bis-NHC ligand, four water-soluble luminescent Au(III) complexes, including those displaying both fluorescence and phosphorescence, were prepared. They show similar photophysical properties in water when compared with their counterparts in acetonitrile. The long phosphorescence lifetime of the water-soluble AuIII complex with C-deprotonated naphthalene-substituted quinoline ligand renders it to function as ratiometric sensor for oxygen. Inhibitory activity of one of these water-soluble Au(III) complexes towards deubiquitinase (DUB) UCHL3 has been investigated; this complex also displayed a significant inhibitory activity with IC50 value of 0.15 µM.

10.
Chemistry ; 18(1): 96-109, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22170325

RESUMEN

A series of [(R'-C^N^C-R'')Pt(L)] complexes with doubly deprotonated cyclometalated R'-C^N^C-R'' ligands (R'-C^N^C-R''=2,6-diphenylpyridine derivatives) functionalized with carbazole, fluorene, or thiophene unit(s) have been synthesized and their photophysical properties studied. The X-ray crystal structures reveal extensive intermolecular π···π and C-H···π interactions between the cyclometalated C^N^C ligands. Compared to previously reported cyclometalated platinum(II) complexes [(C^N^C)Pt(L)], which are non-emissive in solution at room temperature, the carbazole-, fluorene- and thiophene-functionalized [(R'-C^N^C-R'')Pt(L)] (L=DMSO 1-9, C≡N-Ar, 1a-9a) complexes are emissive in solution at room temperature with λ(max) at 564-619 nm and Φ=0.02-0.26. The emissions of the [(R'-C^N^C-R'')Pt(L)] complexes are attributed to electronic excited states with mixed (3)MLCT and (3)IL character. The carbazole/fluorene/thiophene unit(s) allow the tuning of the electronic properties of the [(R'-C^N^C-R'')Pt] moiety, with the emission maxima in a range of 564-619 nm. These are the first examples of organoplatinum(II) complexes bearing doubly deprotonated cyclometalated C^N^C ligands that are emissive in solution at room temperature. In non-degassed DMSO, the emission intensities of 6a-9a are enhanced upon exposure to ambient light. This phenomenon is caused by reacting photogenerated (1)O(2) with a DMSO molecule to form dimethyl sulfone, leading to the removal of dissolved oxygen in solution. Self-assembled nanowires and nanorods are obtained from precipitation of 3a in THF/H(2)O and 8a in DMSO/Et(2)O, respectively. The [(R'-C^N^C-R'')Pt(L)] complexes are soluble in common organic solvents with a high thermal stability (>300 °C), rendering them as phosphorescent dopants for organic light-emitting diode (OLEDs) applications. Red OLEDs with CIE coordinates of (0.65±0.01, 0.35±0.01) were fabricated from 7a or 8a. A maximum external efficiency (η(Ext)) of 12.6% was obtained for the device using 8a as emitter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA