Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 9(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34944720

RESUMEN

A metabolite isolated from fermented soybean, 8-hydroxydaidzein (8-OHD, 7,8,4'-trihydroxyisoflavone, NSC-678112), is widely used in ethnopharmacological research due to its anti-proliferative and anti-inflammatory effects. We reported previously that 8-OHD provoked reactive oxygen species (ROS) overproduction, and induced autophagy, apoptosis, breakpoint cluster region-Abelson murine leukemia viral oncogene (BCR-ABL) degradation, and differentiation in K562 human chronic myeloid leukemia (CML) cells. However, how 8-OHD regulates metabolism, the extracellular matrix during invasion and metastasis, and survival signaling pathways in CML remains largely unexplored. High-throughput technologies have been widely used to discover the therapeutic targets and pathways of drugs. Bioinformatics analysis of 8-OHD-downregulated differentially expressed genes (DEGs) revealed that Janus kinase/signal transducer and activator of transcription (JAK/STAT), matrix metalloproteinases (MMPs), c-Myc, phosphoinositide 3-kinase (PI3K)/AKT, and oxidative phosphorylation (OXPHOS) metabolic pathways were significantly altered by 8-OHD treatment. Western blot analyses validated that 8-OHD significantly downregulated cytosolic JAK2 and the expression and phosphorylation of STAT3 dose- and time-dependently in K562 cells. Zymography and transwell assays also confirmed that K562-secreted MMP9 and invasion activities were dose-dependently inhibited by 8-OHD after 24 h of treatment. RT-qPCR analyses verified that 8-OHD repressed metastasis and OXPHOS-related genes. In combination with DisGeNET, it was found that 8-OHD's downregulation of PI3K/AKT is crucial for controlling CML development. A STRING protein-protein interaction analysis further revealed that AKT and MYC are hub proteins for cancer progression. Western blotting revealed that AKT phosphorylation and nuclear MYC expression were significantly inhibited by 8-OHD. Collectively, this systematic investigation revealed that 8-OHD exerts anti-CML effects by downregulating JAK/STAT, PI3K/AKT, MMP, and OXPHOS pathways, and MYC expression. These results could shed new light on the development of 8-OHD for CML therapy.

2.
J Microbiol Immunol Infect ; 54(5): 845-857, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34176764

RESUMEN

BACKGROUND: Pathogenic coronaviruses include Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. These viruses have induced outbreaks worldwide, and there are currently no effective medications against them. Therefore, there is an urgent need to develop potential drugs against coronaviruses. METHODS: High-throughput technology is widely used to explore differences in messenger (m)RNA and micro (mi)RNA expression profiles, especially to investigate protein-protein interactions and search for new therapeutic compounds. We integrated miRNA and mRNA expression profiles in MERS-CoV-infected cells and compared them to mock-infected controls from public databases. RESULTS: Through the bioinformatics analysis, there were 251 upregulated genes and eight highly differentiated miRNAs that overlapped in the two datasets. External validation verified that these genes had high expression in MERS-CoV-infected cells, including RC3H1, NF-κB, CD69, TNFAIP3, LEAP-2, DUSP10, CREB5, CXCL2, etc. We revealed that immune, olfactory or sensory system-related, and signal-transduction networks were discovered from upregulated mRNAs in MERS-CoV-infected cells. In total, 115 genes were predicted to be related to miRNAs, with the intersection of upregulated mRNAs and miRNA-targeting prediction genes such as TCF4, NR3C1, and POU2F2. Through the Connectivity Map (CMap) platform, we suggested potential compounds to use against MERS-CoV infection, including diethylcarbamazine, harpagoside, bumetanide, enalapril, and valproic acid. CONCLUSIONS: The present study illustrates the crucial roles of miRNA-mRNA interacting networks in MERS-CoV-infected cells. The genes we identified are potential targets for treating MERS-CoV infection; however, these could possibly be extended to other coronavirus infections.


Asunto(s)
Adenocarcinoma del Pulmón/virología , Infecciones por Coronavirus , Células Epiteliales/virología , Neoplasias Pulmonares/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , COVID-19 , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Brotes de Enfermedades , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
3.
Basic Clin Androl ; 31(1): 12, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34011267

RESUMEN

BACKGROUND: Sperm growth and maturation are correlated with the expression levels of Leucine-rich repeat and WD repeat-containing protein 1 (LRWD1), a widely expressed protein in the human testicles. The decrease in LRWD1 cellular level was linked to the reduction in cell growth and mitosis and the rise in cell microtubule atrophy rates. Since DNA methylation has a major regulatory role in gene expression, this study aimed at exploring the effect of the modulation of DNA methylation on LRWD1 expression levels. RESULTS: The results revealed the presence of a CpG island up of 298 bps (- 253 ~ + 45) upon LRWD1 promoter in NT2/D1 cells. The hypermethylation of the LRWD1 promoter was linked to a reduction in the transcription activity in NT2/D1 cells, as indicated by luciferase reporter assay. The methylation activator, floxuridine, confirmed the decrease in the LRWD1 promoter transcriptional activity. On the other hand, 5-Aza-2'-deoxycytidine (5-Aza-dc, methylation inhibitor), significantly augmented LRWD1 promoter activity and the expression levels of mRNA and proteins. Furthermore, DNA methylation status of LRWD1 promoter in human sperm genomic DNA samples was analyzed. The results indicated that methylation of LRWD1 promoter was correlated to sperm activity. CONCLUSIONS: Thus, the regulation of LRWD1 expression is correlated with the methylation status of LRWD1 promoter, which played a significant role in the modulation of spermatogenesis, sperm motility, and vitality. Based on these results, the methylation status of LRWD1 promoter may serve as a novel molecular diagnostic marker or a therapeutic target in males' infertility.


RéSUMé: CONTEXTE: La croissance et la maturation des spermatozoïdes sont corrélées avec les niveaux d'expression de la protéine 1 riche en répétitions Leucine et contenant des répétitions WD (LRWD1), une protéine largement exprimée dans les testicules humains. La diminution du niveau cellulaire en LRWD1 a été liée à une réduction de la croissance et des mitoses cellulaires, et à une augmentation des taux d'atrophie des microtubules cellulaires. Puisque la méthylation de l'ADN joue un rôle régulateur majeur dans l'expression des gènes, cette étude visait à explorer l'effet de la modulation de la méthylation de l'ADN sur les niveaux d'expression de LRWD1. RéSULTATS: Les résultats ont révélé la présence d'un îlot CpP de 298 pbs (-253~+45) sur le promoteur de LRWD1dans les cellules NT2/D1. L'hyperméthylation du promoteur de LRWD1 était liée à une réduction de l'activité de transcription dans les cellules NT2/D1, comme indiqué par l'analyse de l'expression d'un gène rapporteur codant pour la luciférase. L'activateur de méthylation, la floxuridine, a confirmé la diminution de l'activité transcriptionnelle du promoteur de LRWD1. D'autre part, la 5-Aza-2'-déoxycytidine (5-Aza-dc, inhibiteur de méthylation), a significativement augmenté l'activité du promoteur de LRWD1 et les niveaux d'expression de l'ARNm et des protéines. En outre, le statut de méthylation de l'ADN du promoteur de LRWD1 dans les échantillons d'ADN génomique de sperme humain a été analysé. Les résultats ont indiqué que la méthylation du promoteur de LRWD1 était corrélée à l'activité des spermatozoïdes. CONCLUSIONS: Ainsi, la régulation de l'expression LRWD1 est corrélée avec le statut de méthylation du promoteur de LRWD1, qui a joué un rôle important dans la modulation de la spermatogenèse, de la mobilité et de la vitalité des spermatozoïdes. Sur la base de ces résultats, le statut de méthylation du promoteur de LRWD1 peut servir de nouveau marqueur diagnostic moléculaire ou de cible thérapeutique dans l'infertilité masculine.

4.
Medicine (Baltimore) ; 100(7): e24321, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33607766

RESUMEN

ABSTRACT: Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 induces severe infection, and it is responsible for a worldwide disease outbreak starting in late 2019. Currently, there are no effective medications against coronavirus. In the present study, we utilized a holistic bioinformatics approach to study gene signatures of SARS-CoV- and SARS-CoV-2-infected Calu-3 lung adenocarcinoma cells. Through the Gene Ontology platform, we determined that several cytokine genes were up-regulated after SARS-CoV-2 infection, including TNF, IL6, CSF2, IFNL1, IL-17C, CXCL10, and CXCL11. Differentially regulated pathways were detected by the Kyoto Encyclopedia of Genes and Genomes, gene ontology, and Hallmark platform, including chemokines, cytokines, cytokine receptors, cytokine metabolism, inflammation, immune responses, and cellular responses to the virus. A Venn diagram was utilized to illustrate common overlapping genes from SARS-CoV- and SARS-CoV-2-infected datasets. An Ingenuity pathway analysis discovered an enrichment of tumor necrosis factor- (TNF-) and interleukin (IL)-17-related signaling in a gene set enrichment analysis. Downstream networks were predicted by the Database for Annotation, Visualization, and Integrated Discovery platform also revealed that TNF and TNF receptor 2 signaling elicited leukocyte recruitment, activation, and survival of host cells after coronavirus infection. Our discovery provides essential evidence for transcript regulation and downstream signaling of SARS-CoV and SARS-CoV-2 infection.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Línea Celular Tumoral , Quimiocinas/genética , Citocinas/genética , Perfilación de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno , Humanos , Interleucina-17/biosíntesis , Receptores Tipo II del Factor de Necrosis Tumoral/biosíntesis , SARS-CoV-2 , Factor de Necrosis Tumoral alfa/biosíntesis , Regulación hacia Arriba
5.
Aging (Albany NY) ; 13(3): 4157-4181, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33461170

RESUMEN

According to cancer statistics reported in 2020, breast cancer constitutes 30% of new cancer cases diagnosed in American women. Histological markers of breast cancer are expressions of the estrogen receptor (ER), the progesterone receptor (PR), and human epidermal growth factor receptor (HER)-2. Up to 80% of breast cancers are grouped as ER-positive, which implies a crucial role for estrogen in breast cancer development. Therefore, identifying potential therapeutic targets and investigating their downstream pathways and networks are extremely important for drug development in these patients. Through high-throughput technology and bioinformatics screening, we revealed that coiled-coil domain-containing protein 167 (CCDC167) was upregulated in different types of tumors; however, the role of CCDC167 in the development of breast cancer still remains unclear. Integrating many kinds of databases including ONCOMINE, MetaCore, IPA, and Kaplan-Meier Plotter, we found that high expression levels of CCDC167 predicted poor prognoses of breast cancer patients. Knockdown of CCDC167 attenuated aggressive breast cancer growth and proliferation. We also demonstrated that treatment with fluorouracil, carboplatin, paclitaxel, and doxorubicin resulted in decreased expression of CCDC167 and suppressed growth of MCF-7 cells. Collectively, these findings suggest that CCDC167 has high potential as a therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Ciclo Celular/genética , Proliferación Celular/genética , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Carboplatino/farmacología , Doxorrubicina/farmacología , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Paclitaxel/farmacología , ARN Mensajero/metabolismo
6.
Biomedicines ; 8(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207739

RESUMEN

8-Hydroxydaidzein (8-OHD, 7,8,4'-trihydoxyisoflavone) is a hydroxylated derivative of daidzein isolated from fermented soybean products. The aim of this study is to investigate the anti-proliferative effects and the underlying mechanisms of 8-OHD in K562 human chronic myeloid leukemia (CML) cells. We found that 8-OHD induced reactive oxygen species (ROS) overproduction and cell cycle arrest at the S phase by upregulating p21Cip1 and downregulating cyclin D2 (CCND2) and cyclin-dependent kinase 6 (CDK6) expression. 8-OHD also induced autophagy, caspase-7-dependent apoptosis, and the degradation of BCR-ABL oncoprotein. 8-OHD promoted Early Growth Response 1 (EGR1)-mediated megakaryocytic differentiation as an increased expression of marker genes, CD61 and CD42b, and the formation of multi-lobulated nuclei in enlarged K562 cells. A microarray-based transcriptome analysis revealed a total of 3174 differentially expressed genes (DEGs) after 8-OHD (100 µM) treatment for 48 h. Bioinformatics analysis of DEGs showed that hemopoiesis, cell cycle regulation, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) and Janus kinase/signal transducers and activators of transcription (JAK-STAT)-mediated apoptosis/anti-apoptosis networks were significantly regulated by 8-OHD. Western blot analysis confirmed that 8-OHD significantly induced the activation of MAPK and NF-κB signaling pathways, both of which may be responsible, at least in part, for the stimulation of apoptosis, autophagy, and differentiation in K562 cells. This is the first report on the anti-CML effects of 8-OHD and the combination of experimental and in silico analyses could provide a better understanding for the development of 8-OHD on CML therapy.

7.
Anticancer Res ; 40(9): 4947-4960, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32878783

RESUMEN

BACKGROUND/AIM: This study aimed to investigate the anticancer effects and potential mechanisms of sclareol in a human small cell lung carcinoma (SCLC) cell line. MATERIALS AND METHODS: Cell viability was determined by the MTT assay. Cell cycle, apoptosis and caspase activity were evaluated by flow cytometry. Cell cycle and DNA damage related protein expression was determined by western blotting. In vivo evaluation of sclareol was carried out in xenografted tumor mice models. RESULTS: Sclareol significantly reduced cell viability, induced G1 phase arrest and subsequently triggered apoptosis in H1688 cells. In addition, this sclareol-induced growth arrest was associated with DNA damage as indicated by phosphorylation of H2AX, activation of ATR and Chk1. Moreover, in vivo evaluation of sclareol showed that it could inhibit tumor weight and volume in a H1688 xenograft model. CONCLUSION: Sclareol might be a novel and effective therapeutic agent for the treatment of SCLC patients.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Diterpenos/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Carcinoma Pulmonar de Células Pequeñas/patología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cells ; 9(9)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911838

RESUMEN

Hepatitis B is the most prevalent viral hepatitis worldwide, affecting approximately one-third of the world's population. Among HBV factors, the surface protein is the most sensitive biomarker for viral infection, given that it is expressed at high levels in all viral infection phases. The large HBV surface protein (LHBs) contains the integral pre-S1 domain, which binds to the HBV receptor sodium taurocholate co transporting polypeptide on the hepatocyte to facilitate viral entry. The accumulation of viral LHBs and its prevalent pre-S mutants in chronic HBV carriers triggers a sustained endoplasmic reticulum (ER) overload response, leading to ER stress-mediated cell proliferation, metabolic switching and genomic instability, which are associated with pro-oncogenic effects. Ground glass hepatocytes identified in HBV-related hepatocellular carcinoma (HCC) patients harbor pre-S deletion variants that largely accumulate in the ER lumen due to mutation-induced protein misfolding and are associated with increased risks of cancer recurrence and metastasis. Moreover, in contrast to the major HBs, which is decreased in tumors to a greater extent than it is in peritumorous regions, LHBs is continuously expressed during tumorigenesis, indicating that LHBs serves as a promising biomarker for HCC in people with CHB. Continuing efforts to delineate the molecular mechanisms by which LHBs regulates pathological changes in CHB patients are important for establishing a correlation between LHBs biomarkers and HCC development.


Asunto(s)
Carcinoma Hepatocelular/virología , Virus de la Hepatitis B/patogenicidad , Neoplasias Hepáticas/virología , Carcinoma Hepatocelular/patología , Estrés del Retículo Endoplásmico , Virus de la Hepatitis B/metabolismo , Humanos , Neoplasias Hepáticas/patología
9.
Int J Med Sci ; 17(11): 1639-1651, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32669966

RESUMEN

The cluster of differentiation 34 (CD34) family, which includes CD34, podocalyxin-like protein 1 (PODXL), and PODXL2, are type-I transmembrane sialomucins and markers of hematopoietic stem cells (HSCs) and vascular-associated tissues. CD34 family proteins are expressed by endothelial cells and hematopoietic precursors. PODXL is well known to be associated with invadopodia formation and to promote the epithelial-mesenchymal transition, tumor migration and invasion. PODXL expression was correlated with poor survival of cancer patients. However, the role of PODXL2 in cancer has been less fully explored. To reveal the novel role of PODXL2 in breast cancer, the present study evaluated PODXL2 levels in relation to clinical outcomes of cancer patients by performing a bioinformatics analysis using the Oncomine database, Kaplan-Meier plots, and the CCLE database. Empirical validation of bioinformatics predictions was conducted utilizing the short hairpin (sh)-RNA silencing method for PODXL2 in the BT474 invasive ductal breast carcinoma cell line. The bioinformatics analysis revealed that PODXL2 overexpression was correlated with poor survival of breast cancer patients, suggesting an oncogenic role of PODXL2 in breast carcinoma. In a validation experiment, knockdown of PODXL2 in BT474 cells slightly influenced cell proliferation, suppressed migration, and inhibited expressions of downstream molecules, including Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphorylated (p)-Akt (S473), and p-paxillin (Y31) proteins. In addition, knockdown of PODXL2 reduced expression levels of cancer stem cell (CSC) markers, including Oct-4 and Nanog, and the breast CSC marker aldehyde dehydrogenase 1 (ALDH1). Collectively, our present study demonstrated that PODXL2 plays a crucial role in cancer development and could serve as a potential prognostic biomarker in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sialoglicoproteínas/metabolismo , Neoplasias de la Mama/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Biología Computacional , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Sialoglicoproteínas/genética
10.
Infect Genet Evol ; 85: 104438, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32615317

RESUMEN

Coronaviruses (CoVs) consist of six strains, and the severe acute respiratory syndrome coronavirus (SARS-CoV), newly found coronavirus (SARS-CoV-2) has rapidly spread leading to a global outbreak. The ferret (Mustela putorius furo) serves as a useful animal model for studying SARS-CoV/SARS-CoV-2 infection and developing therapeutic strategies. A holistic approach for distinguishing differences in gene signatures during disease progression is lacking. The present study discovered gene expression profiles of short-term (3 days) and long-term (14 days) ferret models after SARS-CoV/SARS-CoV-2 infection using a bioinformatics approach. Through Gene Ontology (GO) and MetaCore analyses, we found that the development of stemness signaling was related to short-term SARS-CoV/SARS-CoV-2 infection. In contrast, pathways involving extracellular matrix and immune responses were associated with long-term SARS-CoV/SARS-CoV-2 infection. Some highly expressed genes in both short- and long-term models played a crucial role in the progression of SARS-CoV/SARS-CoV-2 infection, including DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6, and ACADM. Meanwhile, we revealed that metabolic, glucocorticoid, and reactive oxygen species-associated networks were enriched in both short- and long-term infection models. The present study showed alterations in gene expressions from short-term to long-term SARS-CoV/SARS-CoV-2 infection. The current result provides an explanation of the pathophysiology for post-infectious sequelae and potential targets for treatment.


Asunto(s)
COVID-19/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Pulmón/virología , Animales , COVID-19/metabolismo , COVID-19/virología , Biología Computacional/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hurones , Regulación de la Expresión Génica , Ontología de Genes , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2/patogenicidad
11.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349289

RESUMEN

Sinomenine is an alkaloid derived from Sinomenium acutum. Recent studies have found that sinomenine can inhibit various cancers by inhibiting the proliferation, migration and invasion of tumors and inducing apoptosis. This study aims to investigate the effect and mechanism of sinomenine on inhibiting the migration and invasion of human lung adenocarcinoma cells in vitro. The results demonstrate that viabilities of A549 and H1299 cells were inhibited by sinomenine in a dose-dependent manner. When treated with sub-toxic doses of sinomenine, cell migration and invasion are markedly suppressed. Sinomenine decreases the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9, and the extracellular inducer of matrix metalloproteinase (EMMPRIN/CD147), but elevates the expression of reversion-inducing cysteine-rich proteins with kazal motifs (RECK) and the tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. In addition, sinomenine significantly increases the expression of the epithelial marker E-cadherin but concomitantly decreases the expression of the mesenchymal marker vimentin, suggesting that it suppresses epithelial-mesenchymal transition (EMT). Moreover, sinomenine downregulates oncogenic microRNA-21 (miR-21), which has been known to target RECK. The downregulation of miR-21 decreases cell invasion, while the upregulation of miR-21 increases cell invasion. Furthermore, the downregulation of miR-21 stimulates the expression of RECK, TIMP-1/-2, and E-cadherin, but reduces the expression of MMP-2/-9, EMMPRIN/CD147, and vimentin. Taken together, the results reveal that the inhibition of A549 cell invasion by sinomenine may, at least in part, be through the downregulating expression of MMPs and miR-21. These findings demonstrate an attractive therapeutic potential for sinomenine in lung cancer anti-metastatic therapy.


Asunto(s)
Antineoplásicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Metaloproteinasas de la Matriz/genética , MicroARNs/genética , Morfinanos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
12.
Am J Cancer Res ; 10(1): 95-113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32064155

RESUMEN

Increased activity of amino acid transporters has been observed in a wide variety of cancers. However, whether amino acid metabolism is related to estrogen receptor-positive (ER+) breast cancer has been less well studied. We identified the rate-limiting enzyme involved in amino acid metabolism associated with ER+ breast cancer by integrating numerous bioinformatics tools and laboratory studies. The bioinformatics analysis revealed that highly expressed genes in ER+ breast cancer patients were correlated with breast cancer-related pathways, including ESR1 and PI3K signaling. The metabolic signaling and the amino acid metabolism were significantly regulated in breast neoplasms. We used the ER+ breast cancer cell line MCF-7 and breast cancer tissue from National Cheng Kung University Hospital to validate our findings in bioinformatics. In estradiol-treated MCF-7 cells, genes associated with anabolic metabolism of serine and methionine and genes associated with catabolic metabolism of tyrosine, phenylalanine and arginine were upregulated. Furthermore, the expression levels of ARG2, PSAT1, PSPH, TH, PAH, and MAT1A mRNA were increased in breast cancer patients relative to controls. The aforementioned genes were also found to be highly correlated with distant metastasis-free survival in breast cancer patients. High expression levels of ARG2, CBS, PHGDH, AHCY, HAL, TDO2, SHMT2, MAT1A, MAT2A, GLDC, GLS2, BCAT2, GLUD1, PAH and MTR contributed to poor prognoses, whereas high mRNA expression levels of HECA, CTH, PRODH, TAT, and MAT2B were correlated with good prognoses. FDA-approved drugs, including piperlongumine, ellipticine, etidronic acid, harmine, and meclozine, may have novel therapeutic effects in ER+ patients based on connectivity map (CMap) analyses. Collectively, our present study demonstrated that amino acid metabolism genes play crucial roles in tumor development and may serve as prospective drug targets or biomarkers for ER+ breast cancer.

13.
J Phys Chem B ; 124(1): 266-276, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31886663

RESUMEN

The Adam-Gibbs theory of glass formation posits that the growth in the activation barrier of fragile liquids on cooling emerges from a loss of configurational entropy and concomitant growth in "cooperatively rearranging regions" (CRRs). A body of literature over 2 decades has suggested that "string-like" cooperatively rearranging clusters observed in molecular simulations may be these CRRs-a scenario that would have profound implications for the understanding of the glass transition. The central element of this postulate is the report of an apparent zero-parameter relationship between the mass of string-like CRRs and the relaxation time. Here, we show, based on molecular dynamics simulations of multiple glass-forming liquids, that this finding is the result of an implicit adjustable parameter-a "replacement distance". This parameter is equivalent to an adjustable exponent within a generalized Adam-Gibbs relation, such that it tunes the entire functional form of the relation. Moreover, we are unable to find any objective criterion, based on the radial distribution function or the cluster fractal dimension, for selecting this replacement distance across multiple systems. We conclude that the present data do not establish that string-like cooperative rearrangements, as presently defined, are predictive of segmental relaxation via an Adam-Gibbs-like physical model.

14.
Soft Matter ; 15(39): 7795-7808, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31515550

RESUMEN

The glass transition - an apparent amorphous solidification process - is a central feature of the physical properties of soft materials such as polymers and colloids. A key element of this phenomenon is the observation of a broad spectrum of deviations from an Arrhenius temperature of dynamics in glass-forming liquids, with the extent of deviation quantified by the "fragility" of glass formation. The underlying origin of "fragile" glass formation and its dependence on molecular structure remain major open questions in condensed matter physics and soft materials science. Here we employ molecular dynamics simulations, together with a neural-network-biased genetic algorithm, to design and study model rigid molecules spanning a broad range of fragilities of glass formation. Results indicate that fragility of glass formation can be controlled by tuning molecular asphericity, with extended molecules tending to exhibit low fragilities and compact molecules tending toward higher fragilities. The glass transition temperature itself, on the other hand, correlates well with high-temperature activation behavior and with density. These results point the way towards rational design of glass-forming liquids spanning a range of dynamical behavior, both via these physical insights and via future extensions of this evolutionary design strategy to real chemistries. Finally, we show that results compare well with predictions of the nonlinear Langevin theory of liquid dynamics, which is a precursor of the more recently developed elastically collective nonlinear Langevin equation theory of Mirigian and Schweizer, identifying this framework as a promising basis for molecular design of the glass transition.

15.
J Food Drug Anal ; 27(1): 240-248, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30648577

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia that can lead to long-term complications including heart diseases, stroke, retinopathy, and renal failure. Treatment strategies include stimulating glucose uptake and controlling blood glucose level. Bofutsushosan (BOF) and Daisaikoto (DAI) are two herb-based kampo medicines that have been demonstrated to improve metabolism-associated disorders including obesity, hyperlipidemia, and nonalcoholic fatty liver. Given their bioactivities against metabolic syndromes, we explored in this study the effect of BOF and DAI extracts on glucose absorption and used them as source to identify phytochemical stimulator of glucose absorption. Glucose uptake and mechanistic studies were evaluated in differentiated C2C12 skeletal muscle cells, and HPLC analysis was used to determine the molecular bioactive constituents. Our results indicated that the ethanolic extracts of BOF and DAI (BOFEE and DAIEE, respectively) enhanced the glucose uptake ratio in the differentiated C2C12 cells, and further analysis identified the flavone baicalin as a major constituent capable of efficiently stimulating glucose absorption. Mechanistic studies revealed that the effect from baicalin involved the activation of IRS-1 and GLUT-4, and implicated the AMPK, PI3K/Akt, and MAPK/ERK signaling cascades. Due to its potency, we suggest that baicalin merit further evaluation as a potential candidate anti-hyperglycemic agent for the treatment and management of T2DM.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Animales , Línea Celular , Medicamentos Herbarios Chinos/química , Flavonoides/análisis , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/química , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Soft Matter ; 15(6): 1223-1242, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30556082

RESUMEN

The origin of the precipitous dynamic arrest known as the glass transition is a grand open question of soft condensed matter physics. It has long been suspected that this transition is driven by an onset of particle localization and associated emergence of a glassy modulus. However, progress towards an accepted understanding of glass formation has been impeded by an inability to obtain data sufficient in chemical diversity, relaxation timescales, and spatial and temporal resolution to validate or falsify proposed theories for its physics. Here we first describe a strategy enabling facile high-throughput simulation of glass-forming liquids to nearly unprecedented relaxation times. We then perform simulations of 51 glass-forming liquids, spanning polymers, small organic molecules, inorganics, and metallic glass-formers, with longest relaxation times exceeding one microsecond. Results identify a universal particle-localization transition accompanying glass formation across all classes of glass-forming liquid. The onset temperature of non-Arrhenius dynamics is found to serve as a normalizing condition leading to a master collapse of localization data. This transition exhibits a non-universal relationship with dynamic arrest, suggesting that the nonuniversality of supercooled liquid dynamics enters via the dependence of relaxation times on local cage scale. These results suggest that a universal particle-localization transition may underpin the glass transition, and they emphasize the potential for recent theoretical developments connecting relaxation to localization and emergent elasticity to finally explain the origin of this phenomenon. More broadly, the capacity for high-throughput prediction of glass formation behavior may open the door to computational inverse design of glass-forming materials.

17.
Langmuir ; 34(38): 11442-11448, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30184425

RESUMEN

In this study, we prepared biocompatible superhydrophilic and underwater superoleophobic tannic acid (TA)/polyvinylpyrrolidone (PVP)-coated stainless-steel meshes that mediated extremely efficient separations of mixtures of oil and water. These TA/PVP-coated stainless-steel meshes displayed excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 24 h. Moreover, a funnel-like TA/PVP-coated stainless-steel mesh device could be used for underwater oil transportation and collection. In conjunction with our continuous oil removal system, this device allowed for the continuous collection and removal of oil pollutants from underwater environments. The high performance of these TA/PVP-coated stainless-steel meshes and their green, low-energy, cost-effective preparation suggests great potential for practical applications.

18.
Sci Rep ; 8(1): 12914, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150684

RESUMEN

Hepatocellular carcinoma (HCC) has been recognized worldwide as one of the major causes of cancer death. The medicinal fungus Antrodia cinnamomea (A. cinnamomea) has been served as a functional food for liver protection. The aim of the present study was to investigate the potential activity of A. cinnamomea extracts as a safe booster for the anticancer activity of sorafenib, a multi-kinase inhibitor approved for the treatment of HCC. The biologically active triterpenoids in the ethanolic extracts of A. cinnamomea (EAC) were initially identified by HPLC/LC/MS then the different extracts and sorafenib were assessed in vitro and in vivo. EAC could effectively sensitize HCC cells to low doses of sorafenib, which was perceived via the ability of the combination to repress cell viability and to induce cell cycle arrest and apoptosis in HCC cells. The ability of EAC to enhance sorafenib activity was mediated through targeting mitogen-activated protein (MAP) kinases, modulating cyclin proteins expression and inhibiting cancer cell invasion. Moreover, the proposed combination significantly suppressed ectopic tumor growth in mice with high safety margins compared to single-agent treatment. Thus, this study highlights the advantage of combining EAC with sorafenib as a potential adjuvant therapeutic strategy against HCC.


Asunto(s)
Antrodia/química , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Anexina A5/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Células Hep G2 , Humanos , Immunoblotting , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Propidio/química , Sorafenib/química , Sorafenib/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos
19.
Front Pharmacol ; 9: 780, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072899

RESUMEN

Antrodia cinnamomea (AC) is a medicinal fungal species that has been widely used traditionally in Taiwan for the treatment of diverse health-related conditions including cancer. It possesses potent anti-inflammatory and antioxidant properties in addition to its ability to promote cancer cell death in several human tumors. Our aim was to improve the anticancer activity of AC in hepatocellular carcinoma (HCC) through its cocultivation with ginger aiming at tuning the active ingredients. HCC cell lines, Huh-7 and HepG2 were used to study the in vitro anticancer activity of the ethanolic extracts of AC (EAC) alone or after the cocultivation in presence of ginger (EACG). The results indicated that the cocultivation of AC with ginger significantly induced the production of important triterpenoids and EACG was significantly more potent than EAC in targeting HCC cell lines. EACG effectively inhibited cancer cells growth via the induction of cell cycle arrest at G2/M phase and induction of apoptosis in Huh-7 and HepG2 cells as indicated by MTT assay, cell cycle analysis, Annexin V assay, and the activation of caspase-3. In addition, EACG modulated cyclin proteins expression and mitogen-activated protein kinase (MAPK) signaling pathways in favor of the inhibition of cancer cell survival. Taken together, the current study highlights an evidence that EACG is superior to EAC in targeting cancer cell survival and inducing apoptotic cell death in HCC. These findings support that EACG formula can serve as a potential candidate for HCC adjuvant therapy.

20.
Biochimie ; 148: 99-106, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29544732

RESUMEN

Leucine-rich repeats and WD repeat domain-containing protein 1 (LRWD1) is implicated in the regulation of signal transduction, transcription, RNA processing and tumor development. However, LRWD1 transcriptional regulation is not fully understood. This study aimed to investigate the relationship between LRWD1 expression and reactive oxygen species (ROS) level in human embryonal carcinoma cell line, NT2/D1 cells, which will help in understanding the transcriptional regulatory role of ROS in cells. Results showed that the exposure of NT2/D1 cells to various concentrations of hydrogen peroxide (H2O2) and the nitric oxide (NO) donor sodium nitroprusside (SNP) caused a significant increase in the mRNA and protein expression of LRWD1. In addition, LRWD1 promoter luciferase reporter assay, and Chromatin Immunoprecipitation assay (CHIP assay) showed that nuclear factor erythroid-2-related factor (Nrf2) was involved in the regulation of LRWD1 expression in response to oxidative stress. The involvement of Nrf2 was confirmed by shRNA-mediated knockdown of Nrf2 in NT2/D1 cells, which caused a significant decrease in LRWD1 expression in response to oxidative stress. Similarly, LRWD1 knockdown resulted in the accumulation of H2O2 and superoxide anion radical (O2-). Blocking ROS production by N-acetyl cysteine (NAC) protected NT2/D1 shLRWD1cells from H2O2-induced cell death. Collectively, oxidative stress increased LRWD1 expression through a Nrf2-dependent mechanism, which plays an important role in cellular adaptation to oxidative stress. These results highlight an evidence, on the molecular level, about LRWD1 transcriptional regulation under oxidative stress.


Asunto(s)
Carcinoma Embrionario/patología , Regulación Neoplásica de la Expresión Génica , Proteínas de Microtúbulos/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Secuencia de Bases , Muerte Celular , Línea Celular Tumoral , Silenciador del Gen , Humanos , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Oxígeno/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...