Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282399

RESUMEN

To reduce the operational friction and scale DNA engineering, we report here an in vivo DNA assembly technology platform called SCRIVENER (Sequential Conjugation and Recombination for In Vivo Elongation of Nucleotides with low ERrors). SCRIVENER combines bacterial conjugation, in vivo DNA cutting, and in vivo homologous recombination to seamlessly stitch blocks of DNA together by mating E. coli in large arrays or pools. This workflow is simpler, cheaper, and higher throughput than current DNA assembly approaches that require DNA to be moved in and out of cells at different procedural steps. We perform over 5,000 assemblies with two to 13 DNA blocks that range from 240 bp to 8 kb and show that SCRIVENER is capable of assembling constructs as long as 23 kb at relatively high throughput and fidelity. Most SCRIVENER errors are deletions between long interspersed repeats. However, SCRIVENER can overcome these errors by enabling assembly and sequence verification at high replication at a nominal additional cost per replicate. We show that SCRIVENER can be used to build combinatorial libraries in arrays or pools, and that DNA blocks onboarded into the platform can be repurposed and reused with any other DNA block in high throughput without a PCR step. Because of these features, DNA engineering with SCRIVENER has the potential to accelerate design-build-test-learn cycles of DNA products.

2.
Nucleic Acids Res ; 52(10): e47, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38709890

RESUMEN

Sequence verification of plasmid DNA is critical for many cloning and molecular biology workflows. To leverage high-throughput sequencing, several methods have been developed that add a unique DNA barcode to individual samples prior to pooling and sequencing. However, these methods require an individual plasmid extraction and/or in vitro barcoding reaction for each sample processed, limiting throughput and adding cost. Here, we develop an arrayed in vivo plasmid barcoding platform that enables pooled plasmid extraction and library preparation for Oxford Nanopore sequencing. This method has a high accuracy and recovery rate, and greatly increases throughput and reduces cost relative to other plasmid barcoding methods or Sanger sequencing. We use in vivo barcoding to sequence verify >45 000 plasmids and show that the method can be used to transform error-containing dispersed plasmid pools into sequence-perfect arrays or well-balanced pools. In vivo barcoding does not require any specialized equipment beyond a low-overhead Oxford Nanopore sequencer, enabling most labs to flexibly process hundreds to thousands of plasmids in parallel.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Plásmidos , Plásmidos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , ADN/genética , Código de Barras del ADN Taxonómico/métodos , Secuenciación de Nanoporos/métodos
3.
bioRxiv ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37873145

RESUMEN

Sequence verification of plasmid DNA is critical for many cloning and molecular biology workflows. To leverage high-throughput sequencing, several methods have been developed that add a unique DNA barcode to individual samples prior to pooling and sequencing. However, these methods require an individual plasmid extraction and/or in vitro barcoding reaction for each sample processed, limiting throughput and adding cost. Here, we develop an arrayed in vivo plasmid barcoding platform that enables pooled plasmid extraction and library preparation for Oxford Nanopore sequencing. This method has a high accuracy and recovery rate, and greatly increases throughput and reduces cost relative to other plasmid barcoding methods or Sanger sequencing. We use in vivo barcoding to sequence verify >45,000 plasmids and show that the method can be used to transform error-containing dispersed plasmid pools into sequence-perfect arrays or well-balanced pools. In vivo barcoding does not require any specialized equipment beyond a low-overhead Oxford Nanopore sequencer, enabling most labs to flexibly process hundreds to thousands of plasmids in parallel.

4.
iScience ; 26(5): 106635, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37138775

RESUMEN

Enhanced phenotypic diversity increases a population's likelihood of surviving catastrophic conditions. Hsp90, an essential molecular chaperone and a central network hub in eukaryotes, has been observed to suppress or enhance the effects of genetic variation on phenotypic diversity in response to environmental cues. Because many Hsp90-interacting genes are involved in signaling transduction pathways and transcriptional regulation, we tested how common Hsp90-dependent differential gene expression is in natural populations. Many genes exhibited Hsp90-dependent strain-specific differential expression in five diverse yeast strains. We further identified transcription factors (TFs) potentially contributing to variable expression. We found that on Hsp90 inhibition or environmental stress, activities or abundances of Hsp90-dependent TFs varied among strains, resulting in differential strain-specific expression of their target genes, which consequently led to phenotypic diversity. We provide evidence that individual strains can readily display specific Hsp90-dependent gene expression, suggesting that the evolutionary impacts of Hsp90 are widespread in nature.

5.
Mol Biol Evol ; 38(11): 4732-4747, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34175931

RESUMEN

Prior and extensive plastic rewiring of a transcriptional network, followed by a functional switch of the conserved transcriptional regulator, can shape the evolution of a new network with diverged functions. The presence of three distinct iron regulatory systems in fungi that use orthologous transcriptional regulators suggests that these systems evolved in that manner. Orthologs of the transcriptional activator Sef1 are believed to be central to how iron regulatory systems developed in fungi, involving gene gain, plastic network rewiring, and switches in regulatory function. We show that, in the protoploid yeast Lachancea kluyveri, plastic rewiring of the L. kluyveri Sef1 (Lk-Sef1) network, together with a functional switch, enabled Lk-Sef1 to regulate TCA cycle genes, unlike Candida albicans Sef1 that mainly regulates iron-uptake genes. Moreover, we observed pervasive nonfunctional binding of Sef1 to its target genes. Enhancing Lk-Sef1 activity resuscitated the corresponding transcriptional network, providing immediate adaptive benefits in changing environments. Our study not only sheds light on the evolution of Sef1-centered transcriptional networks but also shows the adaptive potential of nonfunctional transcription factor binding for evolving phenotypic novelty and diversity.


Asunto(s)
Redes Reguladoras de Genes , Plásticos , Candida albicans/genética , Plásticos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Levaduras/genética
6.
Mol Cell ; 50(1): 82-92, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23434373

RESUMEN

Nongenetic cell-to-cell variability often plays an important role for the survival of a clonal population in the face of fluctuating environments. However, the underlying mechanisms regulating such nongenetic heterogeneity remain elusive in most organisms. We report here that a clonal yeast population exhibits morphological heterogeneity when the level of Hsp90, a molecular chaperone, is reduced. The morphological heterogeneity is driven by the dosage of Cdc28 and Cla4, a key regulator of septin formation. Low Hsp90 levels reduce Cla4 protein stability and cause a subpopulation of cells to switch to a filamentous form that has been previously suggested to be beneficial under certain hostile environments. Moreover, Hsp90-dependent morphological heterogeneity can be induced by environmental stress and is conserved across diverse yeast species. Our results suggest that Hsp90 provides an evolutionarily conserved mechanism that links environmental stress to the induction of morphological diversity.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Regulación hacia Abajo , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Septinas/metabolismo , Especificidad de la Especie , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA