Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(15): eadk0002, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598630

RESUMEN

Continuity of behaviors requires animals to make smooth transitions between mutually exclusive behavioral states. Neural principles that govern these transitions are not well understood. Caenorhabditis elegans spontaneously switch between two opposite motor states, forward and backward movement, a phenomenon thought to reflect the reciprocal inhibition between interneurons AVB and AVA. Here, we report that spontaneous locomotion and their corresponding motor circuits are not separately controlled. AVA and AVB are neither functionally equivalent nor strictly reciprocally inhibitory. AVA, but not AVB, maintains a depolarized membrane potential. While AVA phasically inhibits the forward promoting interneuron AVB at a fast timescale, it maintains a tonic, extrasynaptic excitation on AVB over the longer timescale. We propose that AVA, with tonic and phasic activity of opposite polarities on different timescales, acts as a master neuron to break the symmetry between the underlying forward and backward motor circuits. This master neuron model offers a parsimonious solution for sustained locomotion consisted of mutually exclusive motor states.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuronas , Animales , Caenorhabditis elegans/fisiología , Interneuronas/fisiología
2.
EMBO Rep ; 24(11): e57014, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37811674

RESUMEN

Excitation/inhibition (E/I) balance is carefully maintained by the nervous system. The neurotransmitter GABA has been reported to be co-released with its sole precursor, the neurotransmitter glutamate. The genetic and circuitry mechanisms to establish the balance between GABAergic and glutamatergic signaling have not been fully elucidated. Caenorhabditis elegans DVB is an excitatory GABAergic motoneuron that drives the expulsion step in the defecation motor program. We show here that in addition to UNC-47, the vesicular GABA transporter, DVB also expresses EAT-4, a vesicular glutamate transporter. UBR-1, a conserved ubiquitin ligase, regulates DVB activity by suppressing a bidirectional inhibitory glutamate signaling. Loss of UBR-1 impairs DVB Ca2+ activity and expulsion frequency. These impairments are fully compensated by the knockdown of EAT-4 in DVB. Further, glutamate-gated chloride channels GLC-3 and GLC-2/4 receive DVB's glutamate signals to inhibit DVB and enteric muscle activity, respectively. These results implicate an intrinsic cellular mechanism that promotes the inherent asymmetric neural activity. We propose that elevated glutamate in ubr-1 mutants, being the cause of the E/I shift, potentially contributes to Johanson Blizzard syndrome.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Ligasas , Caenorhabditis elegans/genética , Ácido Glutámico , Neurotransmisores , Ubiquitinas
3.
Sci Adv ; 9(9): eade1249, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857454

RESUMEN

Many animals perceive odorant molecules by collecting information from ensembles of olfactory neurons, where each neuron uses receptors that are tuned to recognize certain odorant molecules with different binding affinity. Olfactory systems are able, in principle, to detect and discriminate diverse odorants using combinatorial coding strategies. We have combined microfluidics and multineuronal imaging to study the ensemble-level olfactory representations at the sensory periphery of the nematode Caenorhabditis elegans. The collective activity of C. elegans chemosensory neurons reveals high-dimensional representations of olfactory information across a broad space of odorant molecules. We reveal diverse tuning properties and dose-response curves across chemosensory neurons and across odorants. We describe the unique contribution of each sensory neuron to an ensemble-level code for volatile odorants. We show that a natural stimuli, a set of nematode pheromones, are also encoded by the sensory ensemble. The integrated activity of the C. elegans chemosensory neurons contains sufficient information to robustly encode the intensity and identity of diverse chemical stimuli.


Asunto(s)
Caenorhabditis elegans , Olfato , Animales , Odorantes , Microfluídica , Células Receptoras Sensoriales
4.
Curr Biol ; 32(21): 4631-4644.e5, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36182701

RESUMEN

In many animals, there is a direct correspondence between the motor patterns that drive locomotion and the motor neuron innervation. For example, the adult C. elegans moves with symmetric and alternating dorsal-ventral bending waves arising from symmetric motor neuron input onto the dorsal and ventral muscles. In contrast to the adult, the C. elegans motor circuit at the juvenile larval stage has asymmetric wiring between motor neurons and muscles but still generates adult-like bending waves with dorsal-ventral symmetry. We show that in the juvenile circuit, wiring between excitatory and inhibitory motor neurons coordinates the contraction of dorsal muscles with relaxation of ventral muscles, producing dorsal bends. However, ventral bending is not driven by analogous wiring. Instead, ventral muscles are excited uniformly by premotor interneurons through extrasynaptic signaling. Ventral bends occur in anti-phasic entrainment to activity of the same motor neurons that drive dorsal bends. During maturation, the juvenile motor circuit is replaced by two motor subcircuits that separately drive dorsal and ventral bending. Modeling reveals that the juvenile's immature motor circuit is an adequate solution to generate adult-like dorsal-ventral bending before the animal matures. Developmental rewiring between functionally degenerate circuit solutions, which both generate symmetric bending patterns, minimizes behavioral disruption across maturation.


Asunto(s)
Caenorhabditis elegans , Neuronas Motoras , Animales , Caenorhabditis elegans/fisiología , Neuronas Motoras/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Larva/fisiología
5.
Cell Rep ; 38(6): 110330, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139370

RESUMEN

Escape is an evolutionarily conserved and essential avoidance response. Considered to be innate, most studies on escape responses focused on hard-wired circuits. We report here that a neuropeptide NLP-18 and its cholecystokinin receptor CKR-1 enable the escape circuit to execute a full omega (Ω) turn. We demonstrate in vivo NLP-18 is mainly secreted by the gustatory sensory neuron (ASI) to activate CKR-1 in the head motor neuron (SMD) and the turn-initiating interneuron (AIB). Removal of NLP-18 or CKR-1 or specific knockdown of CKR-1 in SMD or AIB neurons leads to shallower turns, hence less robust escape steering. Consistently, elevation of head motor neuron (SMD)'s Ca2+ transients during escape steering is attenuated upon the removal of NLP-18 or CKR-1. In vitro, synthetic NLP-18 directly evokes CKR-1-dependent currents in oocytes and CKR-1-dependent Ca2+ transients in SMD. Thus, cholecystokinin peptidergic signaling modulates an escape circuit to generate robust escape steering.


Asunto(s)
Colecistoquinina/metabolismo , Neuropéptidos/metabolismo , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans , Locomoción/fisiología
6.
Cell ; 184(20): 5122-5137.e17, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34534446

RESUMEN

Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as mating unfolds in a sequence of component behaviors, the brain operates similarly between instances of each component but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed but change with behavioral dynamics. From individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions in their natural context.


Asunto(s)
Encéfalo/fisiología , Caenorhabditis elegans/fisiología , Sensación/fisiología , Conducta Sexual Animal/fisiología , Animales , Mapeo Encefálico , Copulación/fisiología , Cortejo , Bases de Datos como Asunto , Retroalimentación , Femenino , Masculino , Modelos Biológicos , Movimiento , Neuronas/fisiología , Descanso , Procesamiento de Señales Asistido por Computador , Sinapsis/fisiología , Vulva/fisiología
7.
Elife ; 102021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33880993

RESUMEN

Animals exhibit behavioral and neural responses that persist on longer timescales than transient or fluctuating stimulus inputs. Here, we report that Caenorhabditis elegans uses feedback from the motor circuit to a sensory processing interneuron to sustain its motor state during thermotactic navigation. By imaging circuit activity in behaving animals, we show that a principal postsynaptic partner of the AFD thermosensory neuron, the AIY interneuron, encodes both temperature and motor state information. By optogenetic and genetic manipulation of this circuit, we demonstrate that the motor state representation in AIY is a corollary discharge signal. RIM, an interneuron that is connected with premotor interneurons, is required for this corollary discharge. Ablation of RIM eliminates the motor representation in AIY, allows thermosensory representations to reach downstream premotor interneurons, and reduces the animal's ability to sustain forward movements during thermotaxis. We propose that feedback from the motor circuit to the sensory processing circuit underlies a positive feedback mechanism to generate persistent neural activity and sustained behavioral patterns in a sensorimotor transformation.


Asunto(s)
Conducta Animal , Caenorhabditis elegans/fisiología , Retroalimentación Sensorial , Interneuronas/fisiología , Actividad Motora , Taxia , Sensación Térmica , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interneuronas/metabolismo , Vías Nerviosas/fisiología , Transmisión Sináptica , Factores de Tiempo
8.
Elife ; 92020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32501216

RESUMEN

Complex animal behaviors arise from a flexible combination of stereotyped motor primitives. Here we use the escape responses of the nematode Caenorhabditis elegans to study how a nervous system dynamically explores the action space. The initiation of the escape responses is predictable: the animal moves away from a potential threat, a mechanical or thermal stimulus. But the motor sequence and the timing that follow are variable. We report that a feedforward excitation between neurons encoding distinct motor states underlies robust motor sequence generation, while mutual inhibition between these neurons controls the flexibility of timing in a motor sequence. Electrical synapses contribute to feedforward coupling whereas glutamatergic synapses contribute to inhibition. We conclude that C. elegans generates robust and flexible motor sequences by combining an excitatory coupling and a winner-take-all operation via mutual inhibition between motor modules.


Asunto(s)
Caenorhabditis elegans/fisiología , Reacción de Fuga , Animales , Conducta Animal , Sinapsis Eléctricas , Femenino , Masculino , Actividad Motora , Fenómenos Fisiológicos del Sistema Nervioso , Inhibición Neural
9.
ACS Nano ; 13(3): 3373-3386, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30681836

RESUMEN

Near-infrared (NIR) light penetrates tissue deeply, but its application to motor behavior stimulation has been limited by the lack of known genetic NIR light-responsive sensors. We designed and synthesized a Yb3+/Er3+/Ca2+-based lanthanide-doped upconversion nanoparticle (UCNP) that effectively converts 808 nm NIR light to green light emission. This UCNP is compatible with Chrimson, a cation channel activated by green light; as such, it can be used in the optogenetic manipulation of the motor behaviors of Caenorhabditis elegans. We show that this UCNP effectively activates Chrimson-expressing, inhibitory GABAergic motor neurons, leading to reduced action potential firing in the body wall muscle and resulting in locomotion inhibition. The UCNP also activates the excitatory glutamatergic DVC interneuron, leading to potentiated muscle action potential bursts and active reversal locomotion. Moreover, this UCNP exhibits negligible toxicity in neural development, growth, and reproduction, and the NIR energy required to elicit these behavioral and physiological responses does not activate the animal's temperature response. This study shows that UCNP provides a useful integrated optogenetic toolset, which may have wide applications in other experimental systems.


Asunto(s)
Caenorhabditis elegans/fisiología , Elementos de la Serie de los Lantanoides/química , Neuronas Motoras/fisiología , Nanopartículas/química , Animales , Rayos Infrarrojos
10.
PLoS Genet ; 14(4): e1007303, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29649217

RESUMEN

UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling.


Asunto(s)
Caenorhabditis elegans/fisiología , Ácido Glutámico/metabolismo , Movimiento , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Neuronas Motoras/fisiología , Ubiquitina-Proteína Ligasas/genética
11.
Elife ; 72018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29360035

RESUMEN

Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network.


Asunto(s)
Relojes Biológicos , Caenorhabditis elegans/fisiología , Locomoción , Neuronas Motoras/fisiología , Periodicidad , Animales , Neuronas Colinérgicas/fisiología , Interneuronas/fisiología
13.
Elife ; 52016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27855782

RESUMEN

Neuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates C. elegans motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID. RID bears the anatomic hallmarks of a specialized endocrine neuron: it harbors near-exclusive dense core vesicles that cluster periodically along the axon, and expresses multiple neuropeptides, including the FMRF-amide-related FLP-14. RID activity increases during forward movement. Ablating RID reduces the sustainability of forward movement, a phenotype partially recapitulated by removing FLP-14. Optogenetic depolarization of RID prolongs forward movement, an effect reduced in the absence of FLP-14. Together, these results establish the role of a neuroendocrine cell RID in sustaining a specific behavioral state in C. elegans.


Asunto(s)
Caenorhabditis elegans/fisiología , Vías Nerviosas/efectos de los fármacos , Neuronas/fisiología , Neuropéptidos/metabolismo , Sistemas Neurosecretores/fisiología , Neurotransmisores/metabolismo , Animales , Conducta Animal , Locomoción , Neuronas/metabolismo
14.
Neuron ; 86(6): 1420-32, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26028574

RESUMEN

At synapses, the presynaptic release machinery is precisely juxtaposed to the postsynaptic neurotransmitter receptors. We studied the molecular mechanisms underlying this exquisite alignment at the C. elegans inhibitory synapses. We found that the sole C. elegans neuroligin homolog, NLG-1, localizes specifically at GABAergic postsynapses and is required for clustering the GABA(A) receptor UNC-49. Two presynaptic factors, Punctin/MADD-4, an ADAMTS-like extracellular protein, and neurexin/NRX-1, act partially redundantly to recruit NLG-1 to synapses. In the absence of both MADD-4 and NRX-1, NLG-1 and GABA(A) receptors fail to cluster, and GABAergic synaptic transmission is severely compromised. Biochemically, we detect an interaction between MADD-4 and NLG-1, as well as between MADD-4 and NRX-1. Interestingly, the presence of NRX-1 potentiates binding between Punctin/MADD-4 and NLG-1, suggestive of a tripartite receptor ligand complex. We propose that presynaptic terminals induce postsynaptic receptor clustering through the action of both secreted ECM proteins and trans-synaptic adhesion complexes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Neuronas GABAérgicas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/fisiología , Receptores de GABA-A/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular Neuronal/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Receptores de GABA-A/genética , Transmisión Sináptica/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
15.
Development ; 141(8): 1767-79, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24671950

RESUMEN

Adverse environmental conditions trigger C. elegans larvae to activate an alternative developmental program, termed dauer diapause, which renders them stress resistant. High-level insulin signaling prevents constitutive dauer formation. However, it is not fully understood how animals assess conditions to choose the optimal developmental program. Here, we show that insulin-like peptide (ILP)-mediated neuron-intestine communication plays a role in this developmental decision. Consistent with, and extending, previous findings, we show that the simultaneous removal of INS-4, INS-6 and DAF-28 leads to fully penetrant constitutive dauer formation, whereas the removal of INS-1 and INS-18 significantly inhibits constitutive dauer formation. These ligands are processed by the proprotein convertases PC1/KPC-1 and/or PC2/EGL-3. The agonistic and antagonistic ligands are expressed by, and function in, neurons to prevent or promote dauer formation. By contrast, the insulin receptor DAF-2 and its effector, the FOXO transcription factor DAF-16, function solely in the intestine to regulate the decision to enter diapause. These results suggest that the nervous system normally establishes an agonistic ILP-dominant paradigm to inhibit intestinal DAF-16 activation and allow reproductive development. Under adverse conditions, a switch in the agonistic-antagonistic ILP balance activates intestinal DAF-16, which commits animals to diapause.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Comunicación Celular , Insulina/metabolismo , Intestinos/citología , Neuronas/citología , Transducción de Señal , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Mucosa Intestinal/metabolismo , Larva/metabolismo , Modelos Biológicos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuronas/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
16.
EMBO J ; 32(12): 1745-60, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23665919

RESUMEN

A neuronal F-box protein FSN-1 regulates Caenorhabditis elegans neuromuscular junction development by negatively regulating DLK-mediated MAPK signalling. In the present study, we show that attenuation of insulin/IGF signalling also contributes to FSN-1-dependent synaptic development and function. The aberrant synapse morphology and synaptic transmission in fsn-1 mutants are partially and specifically rescued by reducing insulin/IGF-signalling activity in postsynaptic muscles, as well as by reducing the activity of EGL-3, a prohormone convertase that processes agonistic insulin/IGF ligands INS-4 and INS-6, in neurons. FSN-1 interacts with, and potentiates the ubiquitination of EGL-3 in vitro, and reduces the EGL-3 level in vivo. We propose that FSN-1 may negatively regulate insulin/IGF signalling, in part, through EGL-3-dependent insulin-like ligand processing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Músculos/metabolismo , Sinapsis/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas F-Box/genética , Células HEK293 , Humanos , Insulina/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Somatomedinas/genética , Somatomedinas/metabolismo , Sinapsis/genética , Ubiquitinación/fisiología
17.
Mol Brain ; 4: 16, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21489288

RESUMEN

Gap junctions mediate the electrical coupling and intercellular communication between neighboring cells. Some gap junction proteins, namely connexins and pannexins in vertebrates, and innexins in invertebrates, may also function as hemichannels. A conserved NCA/Dmα1U/NALCN family cation leak channel regulates the excitability and activity of vertebrate and invertebrate neurons. In the present study, we describe a genetic and functional interaction between the innexin UNC-7 and the cation leak channel NCA in Caenorhabditis elegans neurons. While the loss of the neuronal NCA channel function leads to a reduced evoked postsynaptic current at neuromuscular junctions, a simultaneous loss of the UNC-7 function restores the evoked response. The expression of UNC-7 in neurons reverts the effect of the unc-7 mutation; moreover, the expression of UNC-7 mutant proteins that are predicted to be unable to form gap junctions also reverts this effect, suggesting that UNC-7 innexin regulates neuronal activity, in part, through gap junction-independent functions. We propose that, in addition to gap junction-mediated functions, UNC-7 innexin may also form hemichannels to regulate C. elegans' neuronal activity cooperatively with the NCA family leak channels.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Aldicarb/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Cisteína/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Genes Dominantes/genética , Ratones , Mutación/genética , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Neuronas/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transfección
18.
Commun Integr Biol ; 3(3): 251-5, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20714407

RESUMEN

The Ser/Thr SAD kinases are evolutionarily conserved, critical regulators of neural development. Exciting findings in recent years have significantly advanced our understanding of the mechanism through which SAD kinases regulate neural development. Mammalian SAD-A and SAD-B, activated by a master kinase LKB1, regulate microtubule dynamics and polarize neurons. In C. elegans, the sad-1 gene encodes two isoforms, namely the long and the short, which exhibit overlapping and yet distinct functions in neuronal polarity and synaptic organization. Surprisingly, our most recent findings in C. elegans revealed a SAD-1-independent LKB1 activity in neuronal polarity. We also found that the long SAD-1 isoform directly interacts with a STRADalpha pseudokinase, STRD-1, to regulate neuronal polarity and synaptic organization. We elaborate here a working model of SAD-1 in which the two isoforms dimer/oligomerize to form a functional complex, and STRD-1 clusters and localizes the SAD-1 complex to synapses. While the mechanistic difference between the vertebrate and invertebrate SAD kinases may be puzzling, a recent discovery of the functionally distinct SAD-B isoforms predicts that the difference likely arises from our incomplete understanding of the SAD kinase mechanism and may eventually be reconciled as the revelation continues.

19.
Development ; 137(1): 93-102, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023164

RESUMEN

Neurons are polarized cells with morphologically and functionally distinct axons and dendrites. The SAD kinases are crucial for establishing the axon-dendrite identity across species. Previous studies suggest that a tumour suppressor kinase, LKB1, in the presence of a pseudokinase, STRADalpha, initiates axonal differentiation and growth through activating the SAD kinases in vertebrate neurons. STRADalpha was implicated in the localization, stabilization and activation of LKB1 in various cell culture studies. Its in vivo functions, however, have not been examined. In our present study, we analyzed the neuronal phenotypes of the first loss-of-function mutants for STRADalpha and examined their genetic interactions with LKB1 and SAD in C. elegans. Unexpectedly, only the C. elegans STRADalpha, STRD-1, functions exclusively through the SAD kinase, SAD-1, to regulate neuronal polarity and synaptic organization. Moreover, STRD-1 tightly associates with SAD-1 to coordinate its synaptic localizations. By contrast, the C. elegans LKB1, PAR-4, also functions in an additional genetic pathway independently of SAD-1 and STRD-1 to regulate neuronal polarity. We propose that STRD-1 establishes neuronal polarity and organizes synaptic proteins in a complex with the SAD-1 kinase. Our findings suggest that instead of a single, linear genetic pathway, STRADalpha and LKB1 regulate neuronal development through multiple effectors that are shared in some cellular contexts but distinct in others.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Polaridad Celular/genética , Immunoblotting , Inmunoprecipitación , Mutación , Sinapsis/genética
20.
J Neurosci ; 29(16): 5207-17, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19386917

RESUMEN

In a genetic screen for active zone defective mutants in Caenorhabditis elegans, we isolated a loss-of-function allele of unc-7, a gene encoding an innexin/pannexin family gap junction protein. Innexin UNC-7 regulates the size and distribution of active zones at C. elegans neuromuscular junctions. Loss-of-function mutations in another innexin, UNC-9, cause similar active zone defects as unc-7 mutants. In addition to presumptive gap junction localizations, both UNC-7 and UNC-9 are also localized perisynaptically throughout development and required in presynaptic neurons to regulate active zone differentiation. Our mosaic analyses, electron microscopy, as well as expression studies suggest a novel and likely nonjunctional role of specific innexins in active zone differentiation in addition to gap junction formations.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Diferenciación Celular/fisiología , Proteínas de la Membrana/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/ultraestructura , Diferenciación Celular/genética , Conexinas/genética , Conexinas/fisiología , Conexinas/ultraestructura , Uniones Comunicantes/genética , Uniones Comunicantes/fisiología , Uniones Comunicantes/ultraestructura , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Organismos Modificados Genéticamente , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA