Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572594

RESUMEN

We revisit recent findings on experimental and modeling investigations of bainitic transformations under the influence of external stresses and pre-strain during the press hardening process. Experimentally, the transformation kinetics in 22MnB5 under various tensile stresses are studied both on the macroscopic and microstructural level. In the bainitic microstructure, the variant selection effect is analyzed with an optimized prior-austenite grain reconstruction technique. The resulting observations are expressed phenomenologically using a autocatalytic transformation model, which serves for further scale bridging descriptions of the underlying thermo-chemo-mechanical coupling processes during the bainitic transformation. Using analyses of orientation relationships, thermodynamically consistent and nondiagonal phase field models are developed, which are supported by ab initio generated mechanical parameters. Applications are related to the microstructure evolution on the sheaf, subunit, precipitate and grain boundary level.

2.
Materials (Basel) ; 13(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182632

RESUMEN

Martensitic steels are tempered to increase the toughness of the metastable martensite, which is brittle in the as-quenched state, and to achieve a more stable microstructure. During the tempering of steels, several particular overlapping effects can arise. Classical dilatometric investigations can only detect effects by monitoring the integral length change of the sample. Additional in-situ diffractometry allowed a differentiation of the individual effects such as transformation of retained austenite and formation of cementite during tempering. Additionally, the lattice parameters of martensite and therefrom the tetragonality was analyzed. Two low-alloy steels with carbon contents of 0.4 and 1.0 wt.% and a high-alloy 5Cr-1Mo-steel with 0.4 wt.% carbon were investigated by dilatometry and in-situ diffractometry. In this paper, microstructural effects during tempering of the investigated steels are discussed by a comparative study of dilatometric and diffractometric experiments. The influence of the chemical composition on the tempering behavior is illustrated by comparing the determined effects of the three steels. The kinetics of tempering is similar for the low-alloy steels and shifted to much higher temperatures for the high-alloy steel. During tempering, the tetragonality of martensite in the steel with 1.0 wt% carbon shifts towards a low carbon behavior, as in the steels with 0.4 wt.% carbon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA