Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 261: 121994, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38955037

RESUMEN

Biological activated carbon filter (BAC) is one of the most effective technologies for removing disinfection by-product (DBP) precursors from water. Biochar is a lower-cost medium that has the potential to replace granular activated carbon in BAC applications, thus leading to the development of biological biochar filter (BCF). This study compared BCF with BAC for the removal of DBP precursors using column experiments. Both BCF and BAC achieved the removal of DBP precursors, resulting in concentrations of all DBP formation potential below the World Health Organization guideline values for drinking water. Bromodichloromethane and unknown DBP precursor removal by BCF was comparable to that by BAC. However, BAC removed more chloroform and dichloroacetontrile precursors than BCF. For microbial community analysis, cell numbers in a bottom layer (inlet) of BCF and BAC columns were higher than those in the top layer. The abundances of Nordella and a microbial genus from Burkholderiaceae at the bottom layer showed a strong correlation to the number of DBP precursors removed and were comparable in BCF and BAC. This finding likely contributes to the similarities between DBPs species removed and the removal performances of some known and unknown DBP precursors by BCF and BAC. Overall results from this study revealed that biochar can be served as a low-cost and sustainable replacement of activated carbon in water filter for DBP precursor removal.

2.
Environ Pollut ; : 124456, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942273

RESUMEN

Triclocarban (TCC), an antibacterial agent commonly used in personal care products, is one of the top ten contaminants of emerging concern in various environmental media, including soil and contaminated water in vadose zone. This study aimed to investigate TCC-contaminated water remediation using biochar-immobilized bacterial cells. Pseudomonas fluorescens strain MC46 (MC46), an efficient TCC-degrading isolate, was chosen, whereas agro-industrial carbonized waste as biochar was directly used as a sustainable cell immobilization carrier. According to the long-term TCC removal performance results (160 d), the biochar-immobilized cells consistently exhibited high TCC removal efficiencies (84-97%), whereas the free MC46 removed TCC for 76-94%. At 100 days, the detachment of the MC46 cells from the immobilized cell column was observed. The micro-Fourier-transform infrared spectroscopy results indicated that extracellular polymeric substance (EPS) was produced, but polysaccharide and protein fractions were washed out of the column. The lipid fraction of EPS adhered to the biochar, promoting TCC sorption for long-term treatment. The shortening of MC46 cells improved the tolerance of TCC toxicity. The TCC-contaminated water was successfully detoxified by the biochar-immobilized MC46 cells. Overall, the waste-derived biochar-immobilized cell system proposed in this study for the removal of emerging contaminants, including TCC, is efficient, economical, and aligned with the sustainable development concept of value-added utilization of waste.

3.
Environ Sci Technol ; 58(22): 9714-9722, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780409

RESUMEN

Gold nanoparticles (Au-NPs) are used as catalysts for a diverse range of industrial applications. Currently, Au-NPs are synthesized chemically, but studies have shown that plants fed Au deposit, this element naturally as NPs within their tissues. The resulting plant material can be used to make biomass-derived catalysts. In vitro studies have shown that the addition of specific, short (∼10 amino acid) peptide/s to solutions can be used to control the NP size and shape, factors that can be used to optimize catalysts for different processes. Introducing these peptides into the model plant species, Arabidopsis thaliana (Arabidopsis), allows us to regulate the diameter of nanoparticles within the plant itself, consequently influencing the catalytic performance in the resulting pyrolyzed biomass. Furthermore, we show that overexpressing the copper and gold COPPER TRANSPORTER 2 (COPT2) in Arabidopsis increases the uptake of these metals. Adding value to the Au-rich biomass offers the potential to make plant-based remediation and stabilization of mine wastes financially feasible. Thus, this study represents a significant step toward engineering plants for the sustainable recovery of finite and valuable elements from our environment.


Asunto(s)
Arabidopsis , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Arabidopsis/metabolismo , Catálisis , Biomasa , Tamaño de la Partícula , Cobre/química
4.
RSC Adv ; 14(24): 16921-16934, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38799212

RESUMEN

Ursolic acid is a triterpene plant extract that exhibits significant potential as an anti-cancer, anti-tumour, and anti-inflammatory agent. Its direct use in the pharmaceutical industry is hampered by poor uptake of ursolic acid in the human body coupled with rapid metabolism causing a decrease in bioactivity. Modification of ursolic acid can overcome such issues, however, use of toxic reagents, unsustainable synthetic routes and poor reaction metrics have limited its potential. Herein, we demonstrate the first reported carboxymethylation and/or methylation of ursolic acid with dimethyl carbonate (DMC) as a green solvent and sustainable reagent under acidic conditions. The reaction of DMC with ursolic acid, in the presence of PTSA, ZnCl2, or H2SO4-SiO2 yielded the carboxymethylation product 3ß-[[methoxy]carbonyl]oxyurs-12-en-28-oic acid, the methylation product 3ß-methoxyurs-12-en-28-oic acid and the dehydration product urs-2,12-dien-28-oic acid. PTSA demonstrated high conversion and selectivity towards the previously unreported carboxymethylation of ursolic acid, while the application of formic acid in the system led to formylation of ursolic acid (3ß-formylurs-12-en-28-oic acid) in quantitative yields via esterification, with DMC acting solely as a solvent. Meanwhile, the methylation product of ursolic acid, 3ß-methoxyurs-12-en-28-oic acid, was successfully synthesised with FeCl3, demonstrating exceptional conversion and selectivity, >99% and 99%, respectively. Confirmed with the use of qualitative and quantitative green metrics, this result represents a significant improvement in conversion, selectivity, safety, and sustainability over previously reported methods of ursolic acid modification. It was demonstrated that these methods could be applied to other triterpenoids, including corosolic acid. The study also explored the potential pharmaceutical applications of ursolic acid, corosolic acid, and their derivatives, particularly in anti-inflammatory, anti-cancer, and anti-tumour treatments, using molecular ADMET and docking methods. The methods developed in this work have led to the synthesis of novel molecules, thus creating opportunities for the future investigation of biological activity and the modification of a wide range of triterpenoids applying acidic DMC systems to deliver novel active pharmaceutical intermediates.

5.
Int J Radiat Oncol Biol Phys ; 118(3): 588, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340767
6.
RSC Adv ; 14(1): 29-45, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173606

RESUMEN

A combination of supercritical carbon dioxide (scCO2) extraction and microwave-assisted pyrolysis (MAP) have been investigated for the valorisation of waste rice straw. ScCO2 extraction of rice straw led to a 0.7% dry weight yield of lipophilic molecules, at elevated temperatures of 65 °C and pressures of 400 bar. Lipid compositions (fatty acids, fatty alcohol, fatty aldehydes, steroid ketones, phytosterols, n-alkanes and wax esters) of the waxes obtained by scCO2 were comparable to those obtained Soxhlet extraction using the potentially toxic solvent n-hexane. ScCO2 extraction positively influenced the pyrolysis heating rate, with a rate of 420 K min-1 for particles of 500-2000 µm, compared to 240 K min-1 for the same particle size of untreated straw. Particle size significantly affected cellulose decomposition and the distribution of pyrolysis products (gaseous, liquid and char), highlighting the importance of selecting an adequate physical pre-treatment. TG and DTG of the original rice straw and resulting biochar produced indicated that cellulose was completely decomposed during the MAP. While a rapid pressure change occurred at ∼120 °C (size > 2000 µm) and ∼130 °C (size 500-2000 µm) during MAP and was associated with the production of incondensable gas during cellulose decomposition, this takes place at significantly lower temperatures than those observed with conventional pyrolysis, 320 °C. Wax removal by scCO2 influences the dielectric properties of the straw, enhancing microwave absorption with rapid heating rates and elevated final pyrolysis temperatures, illustrating the benefits of combining these sustainable technologies within a holistic rice straw biorefinery.

7.
RSC Adv ; 13(21): 14712-14728, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37197677

RESUMEN

Biochar and magnetic biochar prepared from chrysanthemum waste of the beverage industry are effective adsorbents for the removal of the non-steroidal anti-inflammatory drug, ibuprofen (IBP), from aqueous systems. The development of magnetic biochar using iron chloride, overcame poor separation characteristics from the liquid phase of the powdered biochar after adsorption. Characterisation of biochars was achieved through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), N2 adsorption/desorption porosimetry, scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), moisture and ash content, bulk density, pH and zero-point charge (pHpzc). The specific surface area of non-magnetic and magnetic biochars was 220 and 194 m2 g-1, respectively. Adsorption of ibuprofen was optimised with respect to contact time (5-180 min), solution pH (2-12) and initial drug concentration (5-100 mg L-1), with equilibrium being reached in 1 hour, and the maximum ibuprofen removal occurred at pH 2 and 4 for biochar and magnetic biochars, respectively. Investigation of the adsorption kinetics was achieved through application of the pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion models. Adsorption equilibrium was evaluated using Langmuir, Freundlich and Langmuir-Freundlich isotherm models. The adsorption kinetics and isotherms for both biochars are well described by pseudo-second order kinetic and Langmuir-Freundlich isotherm models, respectively, with the maximum adsorption capacity of biochar and magnetic biochar being 167 and 140 mg g-1, respectively. Chrysanthemum derived non-magnetic and magnetic biochars exhibited significant potential as sustainable adsorbents toward the removal of emerging pharmaceutical pollutants such as ibuprofen from aqueous solution.

8.
Org Biomol Chem ; 21(12): 2603-2609, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36896732

RESUMEN

Cross-coupling and cascade reactions typically rely on unsustainable and toxic volatile organic solvents. 2,2,5,5-Tetramethyloxolane (TMO) and 2,5-diethyl-2,5-dimethyloxolane (DEDMO) are both inherently non-peroxide forming ethers, and have been used in this work as effective, more sustainable, and potentially bio-based alternative solvents for Suzuki-Miyaura and Sonogashira reactions. Suzuki-Miyaura reactions demonstrated good yields for a range of substrates, 71-89% in TMO and 63-92% in DEDMO. In addition, a Sonogashira reaction exhibited the excellent yields of 85-99% performed in TMO, which was significantly higher than traditional volatile organic solvents, THF or toluene, and higher than those reported for another non-peroxide forming ether, namely eucalyptol. Cascade Sonogashira reactions utilizing a simple annulation methodology were particularly effective in TMO. Furthermore, a green metric assessment confirmed that the methodology employing TMO was more sustainable and greener than the traditional solvents THF and toluene, thereby demonstrating the promise of TMO as an alternative solvent for Pd-catalyzed cross-coupling reactions.

9.
RSC Adv ; 13(4): 2427-2437, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36741189

RESUMEN

Nonpolar, nonperoxide forming, sustainable and potentially bio-based solvents, namely 2,2,5,5-tetramethyloxolane (TMO) and 2,5-diethyl-2,5-dimethyloxolane (DEDMO), were utilized as an alternative to toxic petroleum-based hydrocarbon solvents for extraction of hentriacontane-14,16-dione from waste wheat straw waxes. This work is the first to report the application of DEDMO as a solvent for the extraction of natural products. The sustainable methodology developed in this research provided considerable advantages over previously reported systems in terms of high extraction yields, excellent selectivity towards the ß-diketones and low amounts of waste generated. DEDMO provided the highest recovery yield for all the sustainable solvents investigated, recovering 23.7% of the wax (which is a 68.8% yield of the ß-diketone). The extracted lipophilic hentriacontane-14,16-dione was utilised in combination with the sustainable solvents TMO or DEDMO to facilitate the creation of highly hydrophobic coatings. Moreover, the use of DEDMO was found to aid in the self-assembly of nano-structured tubule formation of both the unrefined wax and isolated ß-diketone. Green metric evaluation using process mass intensity (PMI), E-factor, solvent intensity (SI), and water intensity (WI) demonstrated that the described extraction procedure for hentriacontane-14,16-dione was highly sustainable and safer than the previous methodology. This sustainable manufacturing process may create the potential to valorise agricultural wastes as part of a holistic biorefinery.

10.
Org Biomol Chem ; 21(5): 1070-1081, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629051

RESUMEN

Highly effective acid-catalysed reactions of amines with dimethyl carbonate (DMC) have been conducted with significant yields and selectivity of carboxymethylation or methylation products. Lewis acids (FeCl3, ZnCl2, and AlCl3·6H2O), Brønsted acids (PTSA, acetic, and formic acids), and acids supported on silica (silica sulfuric and silica perchlorate) resulted in carboxymethylation of primary aliphatic amines with high conversions. It was found that the Lewis acid FeCl3 also promoted carboxymethylation of primary aromatic amines and secondary amines. At both 90 °C or an elevated temperature of 150 °C under pressure, AlCl3·6H2O demonstrated highly selective monomethylation of aromatic amines. In addition, both silica sulfuric acid and silica perchlorate at 90 °C exhibited no conversion for secondary amines but enhanced carboxymethylation with high conversions of 80.7-87.5% and selectivity of >99.00% at 150 °C in a pressure reactor. At 1.0 equivalent, both promoted excellent conversion and selectivity of primary aliphatic amines at 90 °C. In addition, they were easily recovered and reused for at least four additional reactions without significant loss of efficiency with consistent conversions and selectivity. Green metrics evaluation for the silica sulfuric acid-catalysed reaction highlighted the sustainability features of the process. Silica-supported catalysts are highly stable, making them ideal alternative catalysts for the methylation and carbonylation of various amines with DMC. Acid-catalysed DMC reactions of amines may expand the substrate scope and offer new opportunities for developing sustainable organic synthetic methodologies.

11.
R Soc Open Sci ; 9(6): 211699, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35719880

RESUMEN

Demand for cannabinoid is growing, with the global market expected to reach $9.69 billion by 2025. Understanding how chemical composition changes in hemp at different harvest times is crucial to maximizing this industrial crop value. Important compositional changes in three different compound classes (essential oils, cannabinoids, and lipids) from inflorescences (tops), leaves, and stems of hemp (Cannabis sativa L., Finola variety) at different harvesting stages have been investigated. Over 85% of the total extracts from the tops were cannabinoids, while leaves demonstrated the greatest quantities of wax ester and sterols. Essential oil and cannabinoid increased in tops until full flowering (third harvest), reaching 2030 µg g-1 and 39 475 µg g-1, respectively. Cannabinoids decreased at seed maturity (final harvest) to 26 969 µg g-1. This demonstrates the importance of early harvesting to maximize cannabidiol (CBD), which is highly sought after for its therapeutic and pharmacological properties. A total of 21 161 µg g-1 of CBD was extracted from the tops at full flowering (third harvest); however, a significant increase (63%) in the banned psychoactive tetrahydrocannabinol (THC) was observed from budding (157 µg g-1 of biomass) to the full flowering (9873 µg g-1 of biomass). Harvesting the tops after budding is preferable due to the high CBD content and low amounts of THC.

12.
J Hazard Mater ; 424(Pt C): 127691, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34775314

RESUMEN

Biochar is a low-cost adsorbent with considerable potential for utilization as a water filtration medium; however, organic matter leaching from biochar can lead to the formation of disinfection by-products (DBPs). This study investigated the leaching of dissolved organic carbon (DOC) from eucalyptus-derived biochar and the formation of DBPs generated by chlorination and chloramination. Column experiments with empty bed contact times (EBCTs) of 10 and 30 min were conducted for 200 bed volumes (BVs). The highest DOC concentration (3.5 µg-C/g-biochar) was detected with an EBCT of 30 min. Chloroform (49 µg/L) and dichloroacetonitrile (7 µg/L) because of chlorination were found during the first five BVs, but were reduced thereafter. During the first 10 BVs, unknown chlorinated DBPs generated (CHOCl) by chlorination and chloramination (193 and 152 formulae, respectively) were tentatively identified via an unknown screening analysis. The release of DBP precursors from biochar tentatively identified in this study will impact water filtration applications.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico , Desinfección , Materia Orgánica Disuelta , Halogenación , Espectrometría de Masas , Contaminantes Químicos del Agua/análisis
13.
Anal Methods ; 13(36): 4069-4078, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34554162

RESUMEN

A simple strategy to enhance the detection sensitivity of fluorescent sensor-based CdS quantum dots (CdS QDs) for the detection of mercury ions (Hg2+) was demonstrated. L-Cysteine-capped CdS QDs (L-Cyst-CdS QDs) were synthesized and utilized as a probe for selective detection of Hg2+. The fluorescence intensity of the L-Cyst-CdS QDs was quenched in the presence of Hg2+. However, the detection sensitivity was unsatisfactory. Upon the addition of sodium dodecyl sulfate (SDS), the fluorescence intensity of L-Cyst-CdS QDs can be effectively enhanced. On the other hand, the fluorescence intensity of the L-Cyst-CdS QDs in the presence of SDS (SDS@L-Cyst-CdS QDs) was able to be dramatically decreased with the addition of Hg2+. Furthermore, the proposed sensor displayed excellent selectivity towards Hg2+ compared to other cations. Under optimized conditions, the proposed sensor could be applied to detect trace amounts of Hg2+ with a limit of detection of approximately 36 nM. The applicability of this sensor was demonstrated by the determination of Hg2+ in real water samples, and the results agreed with those obtained from cold vapor atomic absorption spectrometry (CVAAS).


Asunto(s)
Mercurio , Puntos Cuánticos , Colorantes Fluorescentes , Espectrometría de Fluorescencia , Tensoactivos
14.
Bioresour Technol ; 341: 125832, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34461404

RESUMEN

Waste Cassia bakeriana seed pods were used for porous carbon production in a facile pyrolysis process. The carbons were highly efficient adsorbents for methylene blue, congo red and ciprofloxacin antibiotic from aqueous media. The experimental results demonstrated that despite moderate surface area of 283.4 m2/g, KOH activated carbon (PSAC-KOH) exhibited the highest adsorption capacity for congo red reported to date for carbon-based adsorbents (970 mg/g). PSAC-KOH also demonstrated a high adsorption capacity at 600 mg/g for ciprofloxacin. Raman spectroscopy, X-ray diffraction and X-ray Photoelectron spectroscopy analysis of the carbons demonstrated an extensive graphitic characteristic, while Fourier transform infrared spectra of PSAC-KOH suggested a high proportion of aromaticity which promotes adsorption mechanisms including electrostatic and π-π interactions. Pseudo-second-order kinetic model fitting suggested a rate-controlling chemisorption mechanism. The utilization of waste Cassia bakeriana seed pods for carbon production may create new opportunities to develop sustainable and highly efficient adsorbents for water remediation.


Asunto(s)
Cassia , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Carbón Orgánico , Ciprofloxacina , Cinética
15.
BMC Chem ; 15(1): 37, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051832

RESUMEN

This mini-review assesses supercritical carbon dioxide (scCO2) extraction and high-pressure carbon dioxide pre-treatment technologies for valorisation of corn stover agricultural residues with particular focus on showing how these can aid in the creation of a holistic biorefineries. Corn stover is currently the largest source of agriculture residues in the USA, as such there is significant potential for exploitation to yield valuable chemicals. ScCO2 extraction could lead to the recovery of a variety of different chemicals which include flavonoids, sterols, steroid ketones, hydrocarbons, saturated fatty acids, unsaturated fatty acids, fatty alcohols, phenolics and triterpenoids. Importantly, recent studies have not only demonstrated that supercritical extraction can be utilized for the recovery of plant lipids for use in consumer products, including nutraceuticals and personal care, but the processing of treated biomass can lead to enhanced yields and recovery of other products from biorefinery processes. Despite the great potential and opportunities for using scCO2 and high-pressure systems in a biorefinery context their real-world application faces significant challenges to overcome before it is widely applied. Such challenges have also been discussed in the context of this mini-review.

16.
RSC Adv ; 11(62): 39412-39419, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-35492443

RESUMEN

Methylation of acetoin with dimethyl carbonate was performed in a sustainable one-step process, with improved process mass intensity (PMI) and atom economy compared to previously published methods. The resulting product, 3-methoxybutan-2-one (MO) was successfully evaluated as a bio-based solvent, while both Kamlet-Taft solvatochromic parameters and Hansen solubility parameters demonstrate its potential viability in the substitution of chlorinated solvents. MO exhibited a low peroxide forming potential and a negative Ames mutagenicity test and was successfully used as a solvent in a Friedel-Crafts acylation (79% yield compared to 77% in dichloromethane) and for N-alkylations. MO is a renewable oxygenated solvent, with the potential ability to substitute carcinogenic halogenated solvents in some applications.

17.
R Soc Open Sci ; 7(9): 200438, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33047018

RESUMEN

Highly porous carbon-silica composites (CSC) were prepared for the first time through a simple wet impregnation process and subsequent pyrolysis of low-value sugarcane by-products, namely molasses. These CSC materials demonstrate a distinct range of functionalities, which significantly differ from similar materials published in the literature. Importantly, the carbon-silica composites prepared at 800°C exhibited exceptional adsorption capacities for the azo-dye congo red (445 mg g-1), due to the graphitic carbon coating and unique functionality including C-O-C within the porous structure. Congo red adsorption capacity of the highly mesoporous graphitic carbon-silica composites significantly exceeds that of commercial activated carbon and silica, these carbon-silica composites therefore represent an effective step towards the development of porous bio-derived adsorbent for remediation of dye wastewaters. Both the porous properties (surface area and pore size distribution) and the functionality of the carbon coating were dependent on the temperature of preparation. The sustainable synthetic methods employed led to a versatile material that inherited the mesoporosity characteristics from the parent silica, demonstrating mesoporous volumes greater than 90% (as calculated from the total pore volume). Adsorption on the 800°C prepared carbon-silica composites demonstrated an excellent fit with the Langmuir isotherm and the pseudo-first-order kinetic model.

18.
ACS Omega ; 5(26): 16021-16029, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32656423

RESUMEN

A highly active and recyclable Pd-deposited catalyst has been successfully prepared for the Heck reaction. Bio-oil liquid, a byproduct from the microwave pyrolysis of wastepaper, is employed to immobilize palladium nanoparticles on a solid support. FTIR, GC, and NMR results indicate the self-polymerization feature of bio-oil, thus giving rise to a uniform carbonaceous layer coated around the surface of the catalyst. Characteristic analysis of the catalyst indicates that palladium nanoparticles are well-dispersed on the parent SBA-15 solid substrate, which is attributed to the carbonaceous layer that is derived from bio-oil carbonization, allowing a high catalytic performance as a heterogeneous catalyst for the Heck reaction. The as-synthesized catalyst demonstrates remarkable recyclability with firm deposition of palladium nanoparticles on the solid support and could be reused without a dramatic decrease in catalytic activity.

19.
ChemSusChem ; 13(12): 3212-3221, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220058

RESUMEN

Three dipolar aprotic solvents were designed to possess high dipolarity and low toxicity: N,N,N',N'-tetrabutylsuccindiamide (TBSA), N,N'-diethyl-N,N'-dibutylsuccindiamide (EBSA), and N,N'-dimethyl-N,N'-dibutylsuccindiamide (MBSA). They were synthesized catalytically by using a K60 silica catalyst in a solventless system. Their water immiscibility stands out as an unusual and useful property for dipolar aprotic solvents. They were tested in a model Heck reaction, metal-organic framework syntheses, and a selection of polymer solubility experiments in which their performances were found to be comparable to traditional solvents. Furthermore, MBSA was found to be suitable for the production of an industrially relevant membrane from polyethersulfone. An integrated approach involving in silico analysis based on available experimental information, prediction model outcomes and read across data, as well as a panel of in vitro reporter gene assays covering a broad range of toxicological endpoints was used to assess toxicity. These in silico and in vitro tests suggested no alarming indications of toxicity in the new solvents.

20.
Sci Total Environ ; 713: 136708, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32019044

RESUMEN

Consumption of water containing high proportions of manganese could cause Parkinson's like symptoms and damage the central nervous systems. This study aims to investigate the potential of manganese removal through the development of microbial cell-immobilized biochar. The wood vinegar industry generates a large volume of carbonized wood waste (natural biochar) from the pyrolytic process. This is the first investigation utilizing this low value waste combined with biological treatment for water purification. Raw and hydrogen peroxide-modified biochars were used to immobilize an effective manganese-oxidizing bacterium, Streptomyces violarus strain SBP1 (SBP1). The results demonstrated that the modified biochar had a higher proportion of oxygen-containing functional groups leading to better manganese removal. Manganese adsorption by the modified biochar fitted pseudo-second-order and Langmuir models with the maximum adsorption capacity of 1.15 mg g-1. The modified biochar with SBP1 provided the highest removal efficiency at 78%. The advanced synchrotron analyses demonstrated that manganese removal by the biochar with SBP1 is due to the synergistic combination of manganese adsorption by biochars and biological oxidation by SBP1.


Asunto(s)
Streptomyces , Adsorción , Biotransformación , Carbón Orgánico , Manganeso , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...