Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Entomol ; 58(6): 2385-2397, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33893734

RESUMEN

Eastern equine encephalitis virus (EEEV) is the most pathogenic arbovirus endemic to the United States. Studies have demonstrated Florida's role as a regional reservoir for the virus and its ability to support year-round transmission. Previous research has developed risk index models for mapping locations most at risk for EEEV transmission. We compared vector abundance, vector feeding behavior, potential host species, and fauna presence at high versus low-moderate risk sites during the winter and spring. Predicted high-risk sites had a significantly greater abundance of mosquitoes overall, including Culiseta melanura (Coquillett) (Diptera: Culicidae), the primary enzootic vector of EEEV. Twenty host species were identified from Cs. melanura bloodmeals, with the majority taken from avian species. Culiseta melanura largely fed upon the Northern Cardinal (Cardinalis cardinalis (Passeriformes: Cardinalidae)), which accounted for 20-24.4% of the bloodmeals obtained from this species in years 1 and 2, respectively. One EEEV-positive mosquito pool (Cs. melanura) and nine EEEV seropositive sentinel chickens were confirmed during winter-spring collections from high-risk sites; no seropositive chickens nor mosquito pools were found at the low-moderate risk sites. These results suggest that high-risk sites for EEEV activity are characterized by habitats that support populations of Cs. melanura and which may also provide ample opportunities to feed upon Northern Cardinals. The overall low level of mosquito populations during the winter also suggests that control of Cs. melanura populations in winter at high-risk sites may prove effective in reducing EEEV transmission during the peak summer season.


Asunto(s)
Culicidae/fisiología , Virus de la Encefalitis Equina del Este/fisiología , Cadena Alimentaria , Pájaros Cantores , Animales , Ambiente , Conducta Alimentaria , Florida , Estaciones del Año
2.
J Med Entomol ; 52(5): 1074-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26336227

RESUMEN

Winter ecology of putative vectors of eastern equine encephalomyelitis virus (EEEV) in northern Florida was investigated at field locations with evidence of historic EEEV winter transmission. Light traps and resting shelters were used to sample the mosquito community in the vicinity of eight sentinel flocks throughout the winter period (November-April) of 2013 and 2014 in Walton County, FL. Overall mosquito activity was relatively low, although mosquitoes were captured during each week of the study period. Mosquito activity was linked to morning temperature, and females were captured when ambient morning temperatures were quite low (1-5°C). Anopheles crucians Wiedemann, Culex erraticus (Dyar and Knab), Culex territans Walker, and Culiseta melanura (Coquillett) were the most commonly collected mosquito species (of 20 total species). Analysis of blood-engorged mosquitoes revealed a number of mosquito species feeding upon chickens, other birds, amphibians, and domestic and wild mammals. Cs. melanura fed primarily upon chickens and songbirds (Passeriformes), suggesting that this mosquito species is the likely winter vector of EEEV to sentinel chickens in northern Florida. Both resident and nonresident songbird species were fed upon, constituting 63.9 and 36.1% of total songbird meals, respectively. Our results suggest important roles for Cs. melanura and songbird hosts for the winter transmission of EEEV in northern Florida.


Asunto(s)
Culicidae/fisiología , Culicidae/virología , Virus de la Encefalitis Equina del Este/aislamiento & purificación , Encefalomielitis Equina/transmisión , Estaciones del Año , Animales , Encefalomielitis Equina/virología , Conducta Alimentaria , Femenino , Florida , Cadena Alimentaria , Reacción en Cadena de la Polimerasa , Vertebrados
3.
PLoS One ; 8(2): e57879, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469095

RESUMEN

For a variety of infectious diseases, the richness of the community of potential host species has emerged as an important factor in pathogen transmission, whereby a higher richness of host species is associated with a lowered disease risk. The proposed mechanism driving this pattern is an increased likelihood in species-rich communities that infectious individuals will encounter dead-end hosts. Mosquito-borne pathogen systems potentially are exceptions to such "dilution effects" because mosquitoes vary their rates of use of vertebrate host species as bloodmeal sources relative to host availabilities. Such preferences may violate basic assumptions underlying the hypothesis of a dilution effect in pathogen systems. Here, we describe development of a model to predict exposure risk of sentinel chickens to eastern equine encephalitis virus (EEEV) in Walton County, Florida between 2009 and 2010 using avian species richness as well as densities of individual host species potentially important to EEEV transmission as candidate predictor variables. We found the highest support for the model that included the density of northern cardinals, a highly preferred host of mosquito vectors of EEEV, as a predictor variable. The highest-ranking model also included Culiseta melanura abundance as a predictor variable. These results suggest that mosquito preferences for vertebrate hosts influence pathogen transmission.


Asunto(s)
Virus de la Encefalitis Equina del Este/fisiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Modelos Estadísticos , Passeriformes/crecimiento & desarrollo , Animales , Pollos/virología , Culicidae/fisiología , Insectos Vectores/fisiología , Densidad de Población , Riesgo , Análisis Espacial
4.
J Med Entomol ; 49(3): 746-56, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22679885

RESUMEN

Eastern Equine Encephalitis virus (EEEV; family Togaviridae, genus Alphavirus) a highly pathogenic mosquito-borne virus is endemic to eastern North America. The ecology of EEEV in Florida differs from that in other parts of the United States; EEEV in the northeastern United States is historically associated with freshwater wetlands. No formal test of habitat associations of EEEV in Florida has been reported. Geographical Information Sciences (GIS) was used in conjunction with sentinel chicken EEEV seroconversion rate data as a means to examine landscape features associated with EEEV transmission in Walton County, FL. Sentinel sites were categorized as enzootic, periodically enzootic, and negative based on the number of chicken seroconversions to EEEV from 2005 to 2009. EEEV transmission was then categorized by land cover usage using Arc GIS 9.3. The land classification data were analyzed using the Kruskal-Wallis test for each land use class to determine which habitats may be associated with virus transmission as measured by sentinel chicken seroconversion rates. The habitat class found to be most significantly associated with EEEV transmission was tree plantations. The ecological factor most commonly associated with reduced levels of EEEV transmission was vegetated nonforest wetlands. Culiseta melanura (Coquillett), the species generally considered to be the major enzootic EEEV vector, was relatively evenly distributed across all habitat classes, while Aedes vexans (Meigen) and Anopheles crucians Weidemann were most commonly associated with tree plantation habitats.


Asunto(s)
Ecosistema , Encefalomielitis Equina Oriental/transmisión , Animales , Pollos , Culicidae , Florida , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...