Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 18(6): 1340-1354, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37172586

RESUMEN

Undifferentiated neural stem and progenitor cells (NSPCs) encounter extracellular signals that bind plasma membrane proteins and influence differentiation. Membrane proteins are regulated by N-linked glycosylation, making it possible that glycosylation plays a critical role in cell differentiation. We assessed enzymes that control N-glycosylation in NSPCs and found that loss of the enzyme responsible for generating ß1,6-branched N-glycans, N-acetylglucosaminyltransferase V (MGAT5), led to specific changes in NSPC differentiation in vitro and in vivo. Mgat5 homozygous null NSPCs in culture formed more neurons and fewer astrocytes compared with wild-type controls. In the brain cerebral cortex, loss of MGAT5 caused accelerated neuronal differentiation. Rapid neuronal differentiation led to depletion of cells in the NSPC niche, resulting in a shift in cortical neuron layers in Mgat5 null mice. Glycosylation enzyme MGAT5 plays a critical and previously unrecognized role in cell differentiation and early brain development.


Asunto(s)
Encéfalo , Proteínas de la Membrana , Neurogénesis , Animales , Ratones , Encéfalo/crecimiento & desarrollo , Glicosilación , Ratones Noqueados
2.
Transl Psychiatry ; 13(1): 97, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941261

RESUMEN

Neurexins (Nrxns) have been extensively studied for their role in synapse organization and have been linked to many neuropsychiatric disorders, including autism spectrum disorder (ASD), and epilepsy. However, no studies have provided direct evidence that Nrxns may be the key regulator in the shared pathogenesis of these conditions largely due to complexities among Nrxns and their non-canonical functions in different synapses. Recent studies identified NRXN2 mutations in ASD and epilepsy, but little is known about Nrxn2's role in a circuit-specific manner. Here, we report that conditional deletion of Nrxn2 from the hippocampus and cortex (Nrxn2 cKO) results in behavioral abnormalities, including reduced social preference and increased nestlet shredding behavior. Electrophysiological recordings identified an overall increase in hippocampal CA3→CA1 network activity in Nrxn2 cKO mice. Using intracranial electroencephalogram recordings, we observed unprovoked spontaneous reoccurring electrographic and behavioral seizures in Nrxn2 cKO mice. This study provides the first evidence that conditional deletion of Nrxn2 induces increased network activity that manifests into spontaneous recurrent seizures and behavioral impairments.


Asunto(s)
Hipocampo , Convulsiones , Ratones Endogámicos C57BL , Animales , Ratones , Ratones Noqueados , Red Nerviosa/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Hipocampo/metabolismo , Masculino , Femenino , Fenómenos de Retorno al Lugar Habitual , Caracteres Sexuales , Transmisión Sináptica
3.
Nat Commun ; 13(1): 3417, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701434

RESUMEN

Despite the fundamental importance of understanding the brain's wiring diagram, our knowledge of how neuronal connectivity is rewired by traumatic brain injury remains remarkably incomplete. Here we use cellular resolution whole-brain imaging to generate brain-wide maps of the input to inhibitory neurons in a mouse model of traumatic brain injury. We find that somatostatin interneurons are converted into hyperconnected hubs in multiple brain regions, with rich local network connections but diminished long-range inputs, even at areas not directly damaged. The loss of long-range input does not correlate with cell loss in distant brain regions. Interneurons transplanted into the injury site receive orthotopic local and long-range input, suggesting the machinery for establishing distant connections remains intact even after a severe injury. Our results uncover a potential strategy to sustain and optimize inhibition after traumatic brain injury that involves spatial reorganization of the direct inputs to inhibitory neurons across the brain.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Interneuronas , Animales , Encéfalo , Mapeo Encefálico , Interneuronas/fisiología , Ratones , Neuronas/fisiología
4.
Commun Biol ; 4(1): 1297, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789835

RESUMEN

Primary sensory areas of the mammalian neocortex have a remarkable degree of plasticity, allowing neural circuits to adapt to dynamic environments. However, little is known about the effects of traumatic brain injury on visual circuit function. Here we used anatomy and in vivo electrophysiological recordings in adult mice to quantify neuron responses to visual stimuli two weeks and three months after mild controlled cortical impact injury to primary visual cortex (V1). We found that, although V1 remained largely intact in brain-injured mice, there was ~35% reduction in the number of neurons that affected inhibitory cells more broadly than excitatory neurons. V1 neurons showed dramatically reduced activity, impaired responses to visual stimuli and weaker size selectivity and orientation tuning in vivo. Our results show a single, mild contusion injury produces profound and long-lasting impairments in the way V1 neurons encode visual input. These findings provide initial insight into cortical circuit dysfunction following central visual system neurotrauma.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Neuronas/fisiología , Corteza Visual Primaria/fisiología , Visión Ocular/fisiología , Animales , Femenino , Masculino , Ratones
5.
eNeuro ; 8(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658306

RESUMEN

Advances in genome sequencing have identified over 1300 mutations in the SCN1A sodium channel gene that result in genetic epilepsies. However, it still remains unclear how most individual mutations within SCN1A result in seizures. A previous study has shown that the K1270T (KT) mutation, linked to genetic epilepsy with febrile seizure plus (GEFS+) in humans, causes heat-induced seizure activity associated with a temperature-dependent decrease in GABAergic neuron excitability in a Drosophila knock-in model. To examine the behavioral and cellular effects of this mutation in mammals, we introduced the equivalent KT mutation into the mouse (Mus musculus) Scn1a (Scn1aKT) gene using CRISPR/Cas9 and generated mutant lines in two widely used genetic backgrounds: C57BL/6NJ and 129X1/SvJ. In both backgrounds, mice homozygous for the KT mutation had spontaneous seizures and died by postnatal day (P)23. There was no difference in mortality of heterozygous KT mice compared with wild-type littermates up to six months old. Heterozygous mutants exhibited heat-induced seizures at ∼42°C, a temperature that did not induce seizures in wild-type littermates. In acute hippocampal slices at permissive temperatures, current-clamp recordings revealed a significantly depolarized shift in action potential threshold and reduced action potential amplitude in parvalbumin (PV)-expressing inhibitory CA1 interneurons in Scn1aKT/+ mice. There was no change in the firing properties of excitatory CA1 pyramidal neurons. These results suggest that a constitutive decrease in inhibitory interneuron excitability contributes to the seizure phenotype in the mouse model.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1 , Convulsiones Febriles , Animales , Interneuronas , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/genética
6.
Nat Commun ; 10(1): 5156, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727894

RESUMEN

Repair of the traumatically injured brain has been envisioned for decades, but regenerating new neurons at the site of brain injury has been challenging. We show GABAergic progenitors, derived from the embryonic medial ganglionic eminence, migrate long distances following transplantation into the hippocampus of adult mice with traumatic brain injury, functionally integrate as mature inhibitory interneurons and restore post-traumatic decreases in synaptic inhibition. Grafted animals had improvements in memory precision that were reversed by chemogenetic silencing of the transplanted neurons and a long-lasting reduction in spontaneous seizures. Our results reveal a striking ability of transplanted interneurons for incorporating into injured brain circuits, and this approach is a powerful therapeutic strategy for correcting post-traumatic memory and seizure disorders.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/terapia , Interneuronas/trasplante , Memoria , Animales , Movimiento Celular , Supervivencia Celular , Neuronas GABAérgicas/trasplante , Eminencia Media/trasplante , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Sinapsis/metabolismo
7.
Epilepsy Curr ; 19(5): 328-329, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462070

RESUMEN

[Box: see text].

8.
Neurobiol Dis ; 129: 208-216, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30031783

RESUMEN

Traumatic brain injury is a major risk factor for many long-term mental health problems. Although underlying mechanisms likely involve compromised inhibition, little is known about how individual subpopulations of interneurons are affected by neurotrauma. Here we report long-term loss of hippocampal interneurons following controlled cortical impact (CCI) injury in young-adult mice, a model of focal cortical contusion injury in humans. Brain injured mice displayed subfield and cell-type specific decreases in interneurons 30 days after impact depths of 0.5 mm and 1.0 mm, and increasing the depth of impact led to greater cell loss. In general, we found a preferential reduction of interneuron cohorts located in principal cell and polymorph layers, while cell types positioned in the molecular layer appeared well preserved. Our results suggest a dramatic shift of interneuron diversity following contusion injury that may contribute to the pathophysiology of traumatic brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Neuronas GABAérgicas/patología , Hipocampo/patología , Interneuronas/patología , Animales , Masculino , Ratones
9.
Neuron ; 100(5): 1180-1193.e6, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30344048

RESUMEN

Considerable evidence suggests loss-of-function mutations in the chromatin remodeler CHD2 contribute to a broad spectrum of human neurodevelopmental disorders. However, it is unknown how CHD2 mutations lead to impaired brain function. Here we report mice with heterozygous mutations in Chd2 exhibit deficits in neuron proliferation and a shift in neuronal excitability that included divergent changes in excitatory and inhibitory synaptic function. Further in vivo experiments show that Chd2+/- mice displayed aberrant cortical rhythmogenesis and severe deficits in long-term memory, consistent with phenotypes observed in humans. We identified broad, age-dependent transcriptional changes in Chd2+/- mice, including alterations in neurogenesis, synaptic transmission, and disease-related genes. Deficits in interneuron density and memory caused by Chd2+/- were reproduced by Chd2 mutation restricted to a subset of inhibitory neurons and corrected by interneuron transplantation. Our results provide initial insight into how Chd2 haploinsufficiency leads to aberrant cortical network function and impaired memory.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Proteínas de Unión al ADN/fisiología , Memoria a Largo Plazo/fisiología , Neuronas/fisiología , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Femenino , Neuronas GABAérgicas/fisiología , Expresión Génica , Haploinsuficiencia , Hipocampo/crecimiento & desarrollo , Interneuronas/fisiología , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis , Oligodendroglía/fisiología , Prosencéfalo/crecimiento & desarrollo , Corteza Somatosensorial/crecimiento & desarrollo
10.
Epilepsy Curr ; 18(4): 251-252, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254523
11.
Sci Rep ; 8(1): 6781, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29692423

RESUMEN

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

12.
Sci Rep ; 7(1): 8269, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811646

RESUMEN

Hemizygous mutations in the human gene encoding platelet-activating factor acetylhydrolase IB subunit alpha (Pafah1b1), also called Lissencephaly-1, can cause classical lissencephaly, a severe malformation of cortical development. Children with this disorder suffer from deficits in neuronal migration, severe intellectual disability, intractable epilepsy and early death. While many of these features can be reproduced in Pafah1b1+/- mice, the impact of Pafah1b1+/- on the function of individual subpopulations of neurons and ultimately brain circuits is largely unknown. Here, we show tangential migration of young GABAergic interneurons into the developing hippocampus is slowed in Pafah1b1+/- mice. Mutant mice had a decreased density of parvalbumin- and somatostatin-positive interneurons in dentate gyrus, but no change in density of calretinin interneurons. Whole-cell patch-clamp recordings revealed increased excitatory and decreased inhibitory synaptic inputs onto granule cells of Pafah1b1+/- mice. Mutant animals developed spontaneous electrographic seizures, as well as long-term deficits in contextual memory. Our findings provide evidence of a dramatic shift in excitability in the dentate gyrus of Pafah1b1+/- mice that may contribute to epilepsy or cognitive impairments associated with lissencephaly.

13.
Artículo en Inglés | MEDLINE | ID: mdl-26627452

RESUMEN

Stem-cell therapy has extraordinary potential to address critical, unmet needs in the treatment of human disease. One particularly promising approach for the treatment of epilepsy is to increase inhibition in areas of the epileptic brain by grafting new inhibitory cortical interneurons. When grafted from embryos, young γ-aminobutyric acid (GABA)ergic precursors disperse, functionally mature into host brain circuits as local-circuit interneurons, and can stop seizures in both genetic and acquired forms of the disease. These features make interneuron cell transplantation an attractive new approach for the treatment of intractable epilepsies, as well as other brain disorders that involve increased risk for epilepsy as a comorbidity. Here, we review recent efforts to isolate and transplant cortical interneuron precursors derived from embryonic mouse and human cell sources. We also discuss some of the important challenges that must be addressed before stem-cell-based treatment for human epilepsy is realized.


Asunto(s)
Encéfalo/cirugía , Epilepsia Refractaria/cirugía , Interneuronas/trasplante , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Trasplante de Células Madre , Ácido gamma-Aminobutírico/química
14.
Neuron ; 84(5): 940-53, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25467980

RESUMEN

Little is known about genetic mechanisms that regulate the ratio of cortical excitatory and inhibitory neurons. We show that NPAS1 and NPAS3 transcription factors (TFs) are expressed in progenitor domains of the mouse basal ganglia (subpallium, MGE, and CGE). NPAS1(-/-) mutants had increased proliferation, ERK signaling, and expression of Arx in the MGE and CGE. NPAS1(-/-) mutants also had increased neocortical inhibition (sIPSC and mIPSC) and generated an excess of somatostatin(+) (SST) (MGE-derived) and vasoactive intestinal polypeptide(+) (VIP) (CGE-derived) neocortical interneurons, but had a normal density of parvalbumin(+) (PV) (MGE-derived) interneurons. In contrast, NPAS3(-/-) mutants showed decreased proliferation and ERK signaling in progenitors of the ganglionic eminences and had fewer SST(+) and VIP(+) interneurons. NPAS1 repressed activity of an Arx enhancer, and Arx overexpression resulted in increased proliferation of CGE progenitors. These results provide insights into genetic regulation of cortical interneuron numbers and cortical inhibitory tone.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/clasificación , Interneuronas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Trastorno Autístico/genética , Trastorno Autístico/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular/genética , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Humanos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
J Neurosci ; 34(36): 12168-81, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186760

RESUMEN

During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of ß-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.


Asunto(s)
Proteínas 14-3-3/metabolismo , Corteza Cerebral/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Proteínas 14-3-3/genética , Actinas/metabolismo , Animales , Cateninas/metabolismo , Movimiento Celular , Proliferación Celular , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica
16.
Neuron ; 82(2): 350-64, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24742460

RESUMEN

Cortical GABAergic interneurons have essential roles for information processing and their dysfunction is implicated in neuropsychiatric disorders. Transcriptional codes are elucidating mechanisms of interneuron specification in the MGE (a subcortical progenitor zone), which regulate their migration, integration, and function within cortical circuitry. Lhx6, a LIM-homeodomain transcription factor, is essential for specification of MGE-derived somatostatin and parvalbumin interneurons. Here, we demonstrate that some Lhx6⁻/⁻ MGE cells acquire a CGE-like fate. Using an in vivo MGE complementation/transplantation assay, we show that Lhx6-regulated genes Arx and CXCR7 rescue divergent aspects of Lhx6⁻/⁻ cell-fate and laminar mutant phenotypes and provide insight into a neonatal role for CXCR7 in MGE-derived interneuron lamination. Finally, Lhx6 directly binds in vivo to an Arx enhancer and to an intronic CXCR7 enhancer that remains active in mature interneurons. These data define the molecular identity of Lhx6 mutants and introduce technologies to test mechanisms in GABAergic interneuron differentiation.


Asunto(s)
Movimiento Celular/genética , Corteza Cerebral/citología , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Proteínas con Homeodominio LIM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores CXCR/metabolismo , Factores de Transcripción/metabolismo , Potenciales de Acción/genética , Factores de Edad , Animales , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Técnicas In Vitro , Interneuronas/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Receptores CXCR/genética , Trasplante de Células Madre , Células Madre/metabolismo , Factores de Transcripción/genética
17.
Front Cell Neurosci ; 7: 89, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785313

RESUMEN

Traumatic brain injury (TBI) greatly increases the risk for a number of mental health problems and is one of the most common causes of medically intractable epilepsy in humans. Several models of TBI have been developed to investigate the relationship between trauma, seizures, and epilepsy-related changes in neural circuit function. These studies have shown that the brain initiates immediate neuronal and glial responses following an injury, usually leading to significant cell loss in areas of the injured brain. Over time, long-term changes in the organization of neural circuits, particularly in neocortex and hippocampus, lead to an imbalance between excitatory and inhibitory neurotransmission and increased risk for spontaneous seizures. These include alterations to inhibitory interneurons and formation of new, excessive recurrent excitatory synaptic connectivity. Here, we review in vivo models of TBI as well as key cellular mechanisms of synaptic reorganization associated with post-traumatic epilepsy (PTE). The potential role of inflammation and increased blood-brain barrier permeability in the pathophysiology of PTE is also discussed. A better understanding of mechanisms that promote the generation of epileptic activity versus those that promote compensatory brain repair and functional recovery should aid development of successful new therapies for PTE.

18.
Nat Neurosci ; 16(6): 692-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23644485

RESUMEN

Impaired GABA-mediated neurotransmission has been implicated in many neurologic diseases, including epilepsy, intellectual disability and psychiatric disorders. We found that inhibitory neuron transplantation into the hippocampus of adult mice with confirmed epilepsy at the time of grafting markedly reduced the occurrence of electrographic seizures and restored behavioral deficits in spatial learning, hyperactivity and the aggressive response to handling. In the recipient brain, GABA progenitors migrated up to 1,500 µm from the injection site, expressed genes and proteins characteristic for interneurons, differentiated into functional inhibitory neurons and received excitatory synaptic input. In contrast with hippocampus, cell grafts into basolateral amygdala rescued the hyperactivity deficit, but did not alter seizure activity or other abnormal behaviors. Our results highlight a critical role for interneurons in epilepsy and suggest that interneuron cell transplantation is a powerful approach to halting seizures and rescuing accompanying deficits in severely epileptic mice.


Asunto(s)
Conducta Animal , Epilepsia/fisiopatología , Epilepsia/terapia , Neuronas GABAérgicas/trasplante , Interneuronas/trasplante , Trasplante de Células Madre/métodos , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/psicología , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/psicología , Epilepsia del Lóbulo Temporal/terapia , Neuronas GABAérgicas/patología , Ratones , Telencéfalo/embriología , Telencéfalo/patología , Telencéfalo/trasplante
19.
J Neurosci ; 32(37): 12862-75, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22973010

RESUMEN

Type I lissencephaly, a neuronal migration disorder characterized by cognitive disability and refractory epilepsy, is often caused by heterozygous mutations in the LIS1 gene. Histopathologies of malformation-associated epilepsies have been well described, but it remains unclear whether hyperexcitability is attributable to disruptions in neuronal organization or abnormal circuit function. Here, we examined the effect of LIS1 deficiency on excitatory synaptic function in the dentate gyrus of hippocampus, a region believed to serve critical roles in seizure generation and learning and memory. Mice with heterozygous deletion of LIS1 exhibited robust granule cell layer dispersion, and adult-born granule cells labeled with enhanced green fluorescent protein were abnormally positioned in the molecular layer, hilus, and granule cell layer. In whole-cell patch-clamp recordings, reduced LIS1 function was associated with greater excitatory synaptic input to mature granule cells that was consistent with enhanced release probability at glutamatergic synapses. Adult-born granule cells that were ectopically positioned in the molecular layer displayed a more rapid functional maturation and integration into the synaptic network compared with newborn granule cells located in the hilus or granule cell layer or in wild-type controls. In a conditional knock-out mouse, induced LIS1 deficiency in adulthood also enhanced the excitatory input to granule cells in the absence of neuronal disorganization. These findings indicate that disruption of LIS1 has direct effects on excitatory synaptic transmission independent of laminar disorganization, and the ectopic position of adult-born granule cells within a malformed dentate gyrus critically influences their functional maturation and integration.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Envejecimiento , Núcleos Cerebelosos/fisiopatología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas , Sinapsis , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Transmisión Sináptica
20.
Exp Neurol ; 237(1): 199-206, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22735490

RESUMEN

Febrile seizures are the most common seizure type in children under the age of five, but mechanisms underlying seizure generation in vivo remain unclear. Animal models to address this issue primarily focus on immature rodents heated indirectly using a controlled water bath or air blower. Here we describe an in vivo model of hyperthermia-induced seizures in larval zebrafish aged 3 to 7 days post-fertilization (dpf). Bath controlled changes in temperature are rapid and reversible in this model. Acute electrographic seizures following transient hyperthermia showed age-dependence, strain independence, and absence of mortality. Electrographic seizures recorded in the larval zebrafish forebrain were blocked by adding antagonists to the transient receptor potential vanilloid (TRPV4) channel or N-methyl-d-aspartate (NMDA) glutamate receptor to the bathing medium. Application of GABA, GABA re-uptake inhibitors, or TRPV1 antagonist had no effect on hyperthermic seizures. Expression of vanilloid channel and glutamate receptor mRNA was confirmed by quantitative PCR analysis at each developmental stage in larval zebrafish. Taken together, our findings suggest a role of heat-activation of TRPV4 channels and enhanced NMDA receptor-mediated glutamatergic transmission in hyperthermia-induced seizures.


Asunto(s)
Hipertermia Inducida , Receptores de Glutamato/fisiología , Convulsiones/etiología , Convulsiones/metabolismo , Canales Catiónicos TRPV/fisiología , Proteínas de Pez Cebra/fisiología , Potenciales de Acción/genética , Envejecimiento/genética , Animales , Modelos Animales de Enfermedad , Embrión no Mamífero/fisiología , Hipertermia Inducida/métodos , ARN Mensajero/biosíntesis , Receptores de Glutamato/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/fisiología , Convulsiones/fisiopatología , Canales Catiónicos TRPV/biosíntesis , Canales Catiónicos TRPV/genética , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...