Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Bronchology Interv Pulmonol ; 31(2): 132-138, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37332107

RESUMEN

BACKGROUND: Stent encrustation with debris and mucostasis is a significant cause of airway injury and comorbidity, leading to ~25% of stent exchanges (1-3). Previous work from our group has shown that the experimental coating can reduce mucous adhesion in bench testing and demonstrated a signal for reducing airway injury and mucostasis in a feasibility study. OBJECTIVES: The aim of this study is to continue our inquiry in a randomized, single-blinded multi-animal trial to investigate the degree of airway injury and mucostasis using silicone stents with and without this specialized coating. METHODS: We modified commercially available silicone stents with a hydrophilic polymer from Toray Industries. We conducted an in vivo survival study in 6 mainstem airways (3 coated and 3 uncoated) of 3 pigs to compare the degree of airway injury and mucostasis between coated versus noncoated stented airways. Both stents were randomized to either left or right mainstem bronchus. The pathologist was blinded to the stent type. RESULTS: We implanted a total of six 14×15 mm silicone stents (1 per mainstem bronchi) into 3 pigs. All animals survived to termination at 4 weeks. All stents were intact; however, 1 uncoated stent migrated out. On average, all the coated stents demonstrated reduced pathology and tissue injury scores (75 vs. 68.3, respectively). The average total dried mucous weight was slightly higher in the coated stents (0.07 g vs. 0.05 g; respectively). CONCLUSION: Coated stents had lower airway injury compared with uncoated stents in this study. Of all the stents, 1 uncoated stent migrated out and was not included in the dried mucous weight totals. This could explain the slightly higher mucous weight in the coated stents. Nevertheless, this current study demonstrates promising results in lowering airway injury in stents incorporated with the hydrophilic coating, and future studies, including a larger number of subjects, would be needed to corroborate our findings.


Asunto(s)
Materiales Biocompatibles Revestidos , Polímeros , Animales , Materiales Biocompatibles Revestidos/farmacología , Siliconas , Stents , Porcinos , Método Simple Ciego
2.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37205454

RESUMEN

Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. The high sequence conservation in the catalytic and adenosine triphosphate-binding (CA) domain of histidine kinases and their essential role in bacterial signal transduction could enable broad-spectrum antibacterial activity. Through this signal transduction, histidine kinases regulate multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the CA domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain of histidine kinases. We found these compounds have anti-virulence activities in Pseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.

3.
Gut Microbes ; 15(2): 2266627, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37853762

RESUMEN

Immigration to a highly industrialized nation has been associated with metabolic disease and simultaneous shifts in microbiota composition, but the underlying mechanisms are challenging to test in human studies. Here, we conducted a pilot study to assess the differential effects of human gut microbiota collected from the United States (US) and rural Thailand on the murine gut mucosa and immune system. Colonization of germ-free mice with microbiota from US individuals resulted in an increased accumulation of innate-like CD8 T cells in the small intestine lamina propria and intra-epithelial compartments when compared to colonization with microbiota from Thai individuals. Both TCRγδ and CD8αα T cells showed a marked increase in mice receiving Western microbiota and, interestingly, this phenotype was also associated with an increase in intestinal mucus thickness. Serendipitously, an accidentally infected group of mice corroborated this association between elevated inflammatory response and increased mucus thickness. These results suggest that Western-associated human gut microbes contribute to a pro-inflammatory immune response.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Ratones , Animales , Inflamación , Proyectos Piloto , Mucosa Intestinal/metabolismo , Moco , Linfocitos T CD8-positivos
4.
ISME J ; 17(12): 2270-2278, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865718

RESUMEN

Predicting evolution in microbial communities is critical for problems from human health to global nutrient cycling. Understanding how species interactions impact the distribution of fitness effects for a focal population would enhance our ability to predict evolution. Specifically, does the type of ecological interaction, such as mutualism or competition, change the average effect of a mutation (i.e., the mean of the distribution of fitness effects)? Furthermore, how often does increasing community complexity alter the impact of species interactions on mutant fitness? To address these questions, we created a transposon mutant library in Salmonella enterica and measured the fitness of loss of function mutations in 3,550 genes when grown alone versus competitive co-culture or mutualistic co-culture with Escherichia coli and Methylorubrum extorquens. We found that mutualism reduces the average impact of mutations, while competition had no effect. Additionally, mutant fitness in the 3-species communities can be predicted by averaging the fitness in each 2-species community. Finally, we discovered that in the mutualism S. enterica obtained vitamins and more amino acids than previously known. Our results suggest that species interactions can predictably impact fitness effect distributions, in turn suggesting that evolution may ultimately be predictable in multi-species communities.


Asunto(s)
Microbiota , Salmonella enterica , Humanos , Simbiosis/genética , Escherichia coli/genética , Aminoácidos/metabolismo , Salmonella enterica/metabolismo
5.
J Med Microbiol ; 72(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294285

RESUMEN

Organic acids (short chain fatty acids, amino acids, etc.) are common metabolic byproducts of commensal bacteria of the gut and oral cavity in addition to microbiota associated with chronic infections of the airways, skin, and soft tissues. A ubiquitous characteristic of these body sites in which mucus-rich secretions often accumulate in excess, is the presence of mucins; high molecular weight (HMW), glycosylated proteins that decorate the surfaces of non-keratinized epithelia. Owing to their size, mucins complicate quantification of microbial-derived metabolites as these large glycoproteins preclude use of 1D and 2D gel approaches and can obstruct analytical chromatography columns. Standard approaches for quantification of organic acids in mucin-rich samples typically rely on laborious extractions or outsourcing to laboratories specializing in targeted metabolomics. Here we report a high-throughput sample preparation process that reduces mucin abundance and an accompanying isocratic reverse phase high performance liquid chromatography (HPLC) method that enables quantification of microbial-derived organic acids. This approach allows for accurate quantification of compounds of interest (0.01 mM - 100 mM) with minimal sample preparation, a moderate HPLC method run time, and preservation of both guard and analytical column integrity. This approach paves the way for further analyses of microbial-derived metabolites in complex clinical samples.


Asunto(s)
Mucinas , Sistema Respiratorio , Mucinas/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Aminoácidos , Ácidos Grasos Volátiles
6.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214994

RESUMEN

Predicting evolution in microbial communities is critical for problems from human health to global nutrient cycling. Understanding how species interactions impact the distribution of fitness effects for a focal population would enhance our ability to predict evolution. Specifically, it would be useful to know if the type of ecological interaction, such as mutualism or competition, changes the average effect of a mutation (i.e., the mean of the distribution of fitness effects). Furthermore, how often does increasing community complexity alter the impact of species interactions on mutant fitness? To address these questions, we created a transposon mutant library in Salmonella enterica and measured the fitness of loss of function mutations in 3,550 genes when grown alone versus competitive co-culture or mutualistic co-culture with Escherichia coli and Methylorubrum extorquens. We found that mutualism reduces the average impact of mutations, while competition had no effect. Additionally, mutant fitness in the 3-species communities can be predicted by averaging the fitness in each 2-species community. Finally, the fitness effects of several knockouts in the mutualistic communities were surprising. We discovered that S. enterica is obtaining a different source of carbon and more vitamins and amino acids than we had expected. Our results suggest that species interactions can predictably impact fitness effect distributions, in turn suggesting that evolution may ultimately be predictable in multi-species communities.

7.
J Med Microbiol ; 71(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35587447

RESUMEN

Achromobacter xylosoxidans is associated with resilient nosocomial infections, with bacteraemia, pneumonia and chronic cystic fibrosis lung infection being the most common clinical presentations. Innate multi-drug resistance and a suite of virulence factors select for A. xylosoxidans infection during long-term antibiotic therapy, contributing to its persistence, treatment recalcitrance, association with poor clinical outcomes and emergence as a problematic pathogen. Horizontal gene transfer and maintenance of large genomes underpin the resilience and cosmopolitan lifestyle of A. xylosoxidans, and complicate its phylogenetic characterization.


Asunto(s)
Achromobacter denitrificans , Fibrosis Quística , Infecciones por Bacterias Gramnegativas , Achromobacter denitrificans/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fibrosis Quística/complicaciones , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Filogenia
8.
J Virol ; 96(9): e0035222, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35446142

RESUMEN

Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.


Asunto(s)
Enteritis , Virus de la Influenza A , Intestino Delgado , Infecciones por Orthomyxoviridae , Animales , Enteritis/inmunología , Enteritis/fisiopatología , Enteritis/virología , Humanos , Inmunidad Innata , Virus de la Influenza A/inmunología , Intestino Delgado/citología , Intestino Delgado/virología , Linfocitos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/fisiopatología , Infecciones por Orthomyxoviridae/virología
9.
J Bacteriol ; 204(5): e0006422, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35389253

RESUMEN

Chronic rhinosinusitis (CRS) is characterized by immune dysfunction, mucus hypersecretion, and persistent infection of the paranasal sinuses. While Staphylococcus aureus is a primary CRS pathogen, recent sequence-based surveys have found increased relative abundances of anaerobic bacteria, suggesting that S. aureus may experience altered metabolic landscapes in CRS relative to healthy airways. To test this possibility, we characterized the growth kinetics and transcriptome of S. aureus in supernatants of the abundant CRS anaerobe Fusobacterium nucleatum. While growth was initially delayed, S. aureus ultimately grew to similar levels as in the control medium. The transcriptome was significantly affected by F. nucleatum metabolites, with the agr quorum sensing system notably repressed. Conversely, expression of fadX, encoding a putative propionate coenzyme A (CoA)-transferase, was significantly increased, leading to our hypothesis that short-chain fatty acids (SCFAs) produced by F. nucleatum could mediate S. aureus growth behavior and gene expression. Supplementation with propionate and butyrate, but not acetate, recapitulated delayed growth phenotypes observed in F. nucleatum supernatants. A fadX mutant was found to be more sensitive than wild type to propionate, suggesting a role for FadX in the S. aureus SCFA stress response. Interestingly, spontaneous resistance to butyrate, but not propionate, was observed frequently. Whole-genome sequencing and targeted mutagenesis identified codY mutants as resistant to butyrate inhibition. Together, these data show that S. aureus physiology is dependent on its cocolonizing microbiota and metabolites they exchange and indicate that propionate and butyrate may act on different targets in S. aureus to suppress its growth. IMPORTANCE Staphylococcus aureus is an important CRS pathogen, and yet it is found in the upper airways of 30% to 50% of people without complications. The presence of strict and facultative anaerobic bacteria in CRS sinuses has recently spurred research into bacterial interactions and how they influence S. aureus physiology and pathogenesis. We show here that propionate and butyrate produced by one such CRS anaerobe, namely, Fusobacterium nucleatum, alter the growth and gene expression of S. aureus. We show that fadX is important for S. aureus to resist propionate stress and that the CodY regulon mediates growth in inhibitory concentrations of butyrate. This work highlights the possible complexity of S. aureus-anaerobe interactions and implicates membrane stress as a possible mechanism influencing S. aureus behavior in CRS sinuses.


Asunto(s)
Sinusitis , Infecciones Estafilocócicas , Bacterias/genética , Bacterias Anaerobias , Butiratos , Enfermedad Crónica , Ácidos Grasos Volátiles , Humanos , Propionatos , Regulón , Sinusitis/genética , Sinusitis/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
10.
Immunity ; 55(5): 895-911.e10, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35483356

RESUMEN

Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Proteínas Bacterianas , Humanos , Inflamación , Mucinas
11.
J Exp Med ; 219(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34958350

RESUMEN

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Asunto(s)
Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Virosis/etiología , Virosis/transmisión , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Biomarcadores , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Ratones , Ratones Noqueados , Interacciones Microbianas , Roedores , Virosis/metabolismo
12.
Microbiol Resour Announc ; 10(45): e0065221, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34761958

RESUMEN

We report the draft genome sequence of Scheffersomyces spartinae ARV011, which was isolated from the Great Sippewissett Marsh in Falmouth, Massachusetts. Sequencing was performed using the Illumina NovaSeq 6000 platform, yielding 7,598,030 read pairs 250 bp in length. This resulted in a total draft genome size of 12,132,557 bp.

13.
Infect Immun ; 89(9): e0015321, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34125598

RESUMEN

Staphylococcus aureus is associated with the development of persistent and severe inflammatory diseases of the upper airways. Yet, S. aureus is also carried asymptomatically in the sinonasal cavity of ∼50% of healthy adults. The causes of this duality and host and microbial factors that tip the balance between S. aureus pathogenesis and commensalism are poorly understood. We have shown that by degrading mucins, anaerobic microbiota support the growth of airway pathogens by liberating metabolites that are otherwise unavailable. Given the widely reported culture-based detection of anaerobes from individuals with chronic rhinosinusitis (CRS), here we tested our hypothesis that CRS microbiota is characterized by a mucin-degrading phenotype that alters S. aureus physiology. Using 16S rRNA gene sequencing, we indeed observed an increased prevalence and abundance of anaerobes in CRS relative to non-CRS controls. PICRUSt2-based functional predictions suggested increased mucin degradation potential among CRS microbiota that was confirmed by direct enrichment culture. Prevotella, Fusobacterium, and Streptococcus comprised a core mucin-degrading community across CRS subjects that generated a nutrient pool that augmented S. aureus growth on mucin as a carbon source. Finally, using transcriptome sequencing (RNA-seq), we observed that S. aureus transcription is profoundly altered in the presence of mucin-derived metabolites, though expression of several key metabolism- and virulence-associated pathways varied between CRS-derived bacterial communities. Together, these data support a model in which S. aureus metabolism and virulence in the upper airways are dependent upon the composition of cocolonizing microbiota and the metabolites they exchange.


Asunto(s)
Interacciones Huésped-Patógeno , Interacciones Microbianas , Microbiota , Infecciones del Sistema Respiratorio/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Anaerobiosis , Enfermedad Crónica , Susceptibilidad a Enfermedades , Humanos
14.
J Cyst Fibros ; 20(4): 678-681, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33931358

RESUMEN

Chronic rhinosinusitis (CRS) affects nearly all individuals with cystic fibrosis (CF) and is thought to serve as a reservoir for microbiota that subsequently colonize the lung. To better understand the microbial ecology of CRS, we generated a 16S rRNA gene sequencing profile of sinus mucus from CF-CRS patients. We show that CF-CRS sinuses harbor bacterial diversity not entirely captured by clinical culture. Culture data consistently identified the dominant organism in most patients, though lower abundance bacteria were not always identified. We also demonstrate that bacterial communities dominated by Staphylococcus spp. were significantly more diverse compared to those dominated by Pseudomonas spp. Diversity was not significantly associated with clinical factors or patient age, however, younger subjects yielded a much wider range of bacterial diversity. These data mirror bacterial community dynamics in the lung and provide additional insight into the role of sinus microbiota in chronic airway disease progression.


Asunto(s)
Fibrosis Quística/microbiología , Rinitis/microbiología , Sinusitis/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Enfermedad Crónica , Correlación de Datos , Fibrosis Quística/complicaciones , Humanos , Microbiota , Rinitis/complicaciones , Sinusitis/complicaciones
15.
PLoS Pathog ; 17(1): e1009292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507952

RESUMEN

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/fisiología , Tropismo Viral , Adenosina Monofosfato/farmacología , Alanina/farmacología , COVID-19/genética , Epitelio/inmunología , Epitelio/virología , Humanos , Interferones/genética , Interferones/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Pulmón/inmunología , Pulmón/virología , SARS-CoV-2/efectos de los fármacos , Tropismo Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
16.
Curr Biol ; 31(2): R85-R88, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33497639

RESUMEN

Mucin glycoproteins confer robust protection against infection by regulating bacterial behavior and virulence gene expression, but the mechanistic bases are poorly understood. New work implicates glycan-based signaling through a carbohydrate-binding sensor kinase in mediating pathogen behavior at the mucosal interface.


Asunto(s)
Mucinas , Moco , Membrana Mucosa , Polisacáridos , Virulencia
17.
bioRxiv ; 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33106802

RESUMEN

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.

18.
Artículo en Inglés | MEDLINE | ID: mdl-32850504

RESUMEN

Background: Chronic rhinosinusitis (CRS) is characterized by complex bacterial infections with persistent inflammation. Based on our rabbit model of sinusitis, blockage of sinus ostia generated a shift in microbiota to a predominance of mucin degrading microbes (MDM) with acute inflammation at 2 weeks. This was followed by conversion to chronic sinus inflammation at 3 months with a robust increase in pathogenic bacteria (e.g., Pseudomonas). MDMs are known to produce acid metabolites [short chain fatty acids (SCFA)] that have the potential to stimulate pathogen growth by offering a carbon source to non-fermenting sinus pathogens (e.g., Pseudomonas). The objective of this study is to evaluate the concentrations of SCFA within the mucus and its contribution to the growth of P. aeruginosa. Methods: Healthy and sinusitis mucus from the rabbit model were collected and co-cultured with the PAO1 strain of P. aeruginosa for 72 h and colony forming units (CFUs) were determined with the targeted quantification of three SCFAs (acetate, propionate, butyrate). Quantification of SCFAs in healthy and sinusitis mucus from patients with P. aeruginosa was also performed via high performance liquid chromatography. Results: To provide evidence of fermentative activity, SCFAs were quantified within the mucus samples from rabbits with and without sinusitis. Acetate concentrations were significantly greater in sinusitis mucus compared to controls (4.13 ± 0.53 vs. 1.94 ± 0.44 mM, p < 0.01). After 72 h of co-culturing mucus samples with PAO1 in the presence of mucin medium, the blue-green pigment characteristic of Pseudomonas was observed throughout tubes containing sinusitis mucus. CFUs were higher in cultures containing mucus samples from sinusitis (8.4 × 109 ± 4.8 × 107) compared to control (1.4 × 109 ± 2.0 × 107) or no mucus (1.5 × 109 ± 2.1 × 107) (p < 0.0001). To provide evidence of fermentative activity in human CRS with P. aeruginosa, the presence of SCFAs in human mucus was analyzed and all SCFAs were significantly higher in CRS with P. aeruginosa compared to controls (p < 0.05). Conclusion: Given that SCFAs are solely derived from bacterial fermentation, our evidence suggests a critical role for mucin-degrading bacteria in generating carbon-source nutrients for pathogens. MDM may contribute to the development of recalcitrant CRS by degrading mucins, thus providing nutrients for potential pathogens like P. aeruginosa.


Asunto(s)
Senos Paranasales , Infecciones por Pseudomonas , Sinusitis , Animales , Enfermedad Crónica , Ácidos Grasos Volátiles , Humanos , Moco , Pseudomonas aeruginosa , Conejos
19.
mSphere ; 5(2)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350096

RESUMEN

A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a "weakest-link" approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them.IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections.


Asunto(s)
Bacterias Anaerobias/crecimiento & desarrollo , Fibrosis Quística/microbiología , Interacciones Microbianas , Pseudomonas aeruginosa/crecimiento & desarrollo , Esputo/microbiología , Antibacterianos/farmacología , Bacterias Anaerobias/genética , Coinfección/microbiología , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Microbiota/genética , Mucinas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad
20.
J Glob Antimicrob Resist ; 22: 689-694, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32353524

RESUMEN

BACKGROUND: Despite availability of ceftolozane-tazobactam (C/T) and ceftazidime-avibactam (CZA) for several years, the individual spectrum of activity of each agent may not be widely known. We compared the activity of C/T and CZA against convenience samples of 119 extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales and 60 ß-lactam-resistant Pseudomonas aeruginosa clinical isolates collected from three U.S. institutions. METHODS: Minimal inhibitory concentrations (MICs) for C/T and CZA were determined by broth microdilution. Molecular identification of nine ß-lactamase gene targets was conducted for Enterobacterales and P. aeruginosa isolates with increased MICs to C/T or CZA. RESULTS: More than 90% of Enterobacterales isolates demonstrated susceptibility to both C/T and CZA, in contrast to the other traditional ß-lactam agents tested, which were much less active. The MIC50/90 values were nearly equivalent between agents. The most common ß-lactamase genes identified in Enterobacterales isolates with MIC values ≥2 mg/L were the CTX-M-1 group (85%) and CMY-2-like (23%) ß-lactamases. Both agents were active against >80% of ß-lactam-resistant P. aeruginosa isolates tested, most of which had oprD mutations identified. One P. aeruginosa isolate was positive for a Klebsiella pneumoniae carbapenemase-type gene but remained meropenem-susceptible. The MIC50 values were four-fold lower in favour of C/T (1 mg/L vs. 4 mg/L) against P. aeruginosa. CONCLUSIONS: Our data suggest that either agent may be a reasonable choice for centres with a high proportion of ESBL producers; however, C/T may have improved activity against P. aeruginosa and may be preferred in institutions with a higher frequency of resistant pseudomonal isolates.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo , Ceftazidima , Cefalosporinas , Combinación de Medicamentos , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacología , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...