Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
Antioxidants (Basel) ; 13(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38929151

RESUMEN

Xanthine Oxidoreductase (XOR) is a ubiquitous, essential enzyme responsible for the terminal steps of purine catabolism, ultimately producing uric acid that is eliminated by the kidneys. XOR is also a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various physiological pathways, as well as contribute to the development and the progression of chronic conditions including kidney diseases, which are increasing in prevalence worldwide. XOR activity can promote oxidative distress, endothelial dysfunction, and inflammation through the biological effects of reactive oxygen species; nitric oxide and uric acid are the major products of XOR activity. However, the complex relationship of these reactions in disease settings has long been debated, and the environmental influences and genetics remain largely unknown. In this review, we give an overview of the biochemistry, biology, environmental, and current clinical impact of XOR in the kidney. Finally, we highlight recent genetic studies linking XOR and risk for kidney disease, igniting enthusiasm for future biomarker development and novel therapeutic approaches targeting XOR.

2.
ACS ES T Eng ; 4(3): 660-672, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38481751

RESUMEN

Municipalities with excess anaerobic digestion capacity accept offsite wastes for co-digestion to meet sustainability goals and create more biogas. Despite the benefits inherent to co-digestion, the temporal and compositional heterogeneity of external waste streams creates operational challenges that lead to upsets or conservative co-digestion. Given the complex microbial bioprocesses occurring during anaerobic digestion, prediction and modeling of the outcomes can be challenging, and machine learning has the potential to improve understanding and control of co-digestion processes. Biogas flows are a surrogate for process health, and here, we predicted biogas production from historical data collected by a water resource recovery facility (WRRF) during normal operation. We tested a daily lab and operational data set (n = 1089 after cleaning) and a minute-by-minute supervisory control and data acquisition (SCADA) operational data set (n = 491,761 after cleaning) to determine if forecasting biogas flow for a 24 h time horizon is feasible without collecting additional data. We found that a multilayer perceptron (MLP) neural network model outperformed tree-based and multiple linear regression models. Using a high-resolution SCADA data set for the first time, we showed that MLP neural networks could predict biogas production with an adjusted coefficient of determination (R2) of 0.78 and a mean absolute percentage error of 13.4% on a holdout test set. Adding daily laboratory analyses to the model did not appreciably improve the prediction of biogas flows. Feature engineering was essential to an accurate prediction, and 11 of the 15 most important features in the SCADA model were calculated from raw SCADA outputs. In summary, this paper demonstrates that minute-scale SCADA information collected at a municipal co-digestion facility can forecast biogas production, as a first step toward a digital twin model, without additional data collection.

3.
Trends Immunol ; 44(9): 701-711, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591712

RESUMEN

Recent advances in preclinical modeling of urinary tract infections (UTIs) have enabled the identification of key facets of the host response that influence pathogen clearance and tissue damage. Here, we review new insights into the functions of neutrophils, macrophages, and antimicrobial peptides in innate control of uropathogens and in mammalian infection-related tissue injury and repair. We also discuss novel functions for renal epithelial cells in innate antimicrobial defense. In addition, epigenetic modifications during bacterial cystitis have been implicated in bladder remodeling, conveying susceptibility to recurrent UTI. In total, contemporary work in this arena has better defined host processes that shape UTI susceptibility and severity and might inform the development of novel preventive and therapeutic approaches for acute and recurrent UTI.


Asunto(s)
Sistema Urinario , Animales , Humanos , Epigénesis Genética , Células Epiteliales , Cinética , Macrófagos , Mamíferos
4.
J Am Acad Orthop Surg ; 31(15): e579-e589, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37285585

RESUMEN

INTRODUCTION: Lateral meniscus transplantation successfully treats symptomatic meniscus deficiency in children. Although clinical outcomes are well-characterized, joint forces in meniscus-deficient and transplant states are unknown. The purpose of this study was to characterize contact area (CA) and contact pressures (CP) of transplanted lateral meniscus in pediatric cadavers. We hypothesize that (1) compared with the intact state, meniscectomy will decrease femorotibial CA and increase CP, and increase contact pressure (CP) and (2) compared with the meniscectomy state, meniscus transplantation will improve contact biomechanics toward the intact meniscus state. METHODS: Pressure-mapping sensors were inserted underneath the lateral meniscus of eight cadaver knees aged 8 to 12 years. CA and CP on the lateral tibial plateau were measured in the intact, meniscectomy, and transplant states each at 0°, 30°, and 60° of knee flexion. Meniscus transplant was anchored with transosseous pull-out sutures and sutured to the joint capsule with vertical mattresses. The effects of meniscus states and flexion angle on CA and CP were measured by a two-way analysis of variance repeated measures model. One-way analysis of variance measured pairwise comparisons between meniscus states. RESULTS: Regarding CA, at 0°, no differences between the groups reached significance. Meniscectomy reduced CA at 30° ( P = 0.043) and 60° ( P = 0.001). Transplant and intact states were comparable at 30°. At 60°, transplant significantly increased CA ( P = 0.04). Regarding contact pressure, the average pressure increased with meniscectomy at all angles of flexion (0° P = 0.025; 30° P = 0.021; 60° P = 0.016) and decreased with transplant relative to respective intact values. Peak pressure increased with meniscectomy at 30° ( P = 0.009) and 60° ( P = 0.041), but only reached intact comparable values at 60°. Pairwise comparisons support restoration of average CP with transplant, but not peak CP. DISCUSSION: Pediatric meniscus transplantation improves average CP and CA more than peak CP, but does not completely restore baseline biomechanics. Net improvements in contact biomechanics after transplant, relative to the meniscectomy state, support meniscus transplant. STUDY DESIGN: Descriptive laboratory study, Level III.


Asunto(s)
Meniscectomía , Lesiones de Menisco Tibial , Humanos , Niño , Lesiones de Menisco Tibial/cirugía , Articulación de la Rodilla/cirugía , Meniscos Tibiales/cirugía , Cadáver , Fenómenos Biomecánicos
5.
Health Secur ; 21(4): 303-309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37289796

RESUMEN

The pursuit of disinfecting porous materials or fomites to inactivate viral agents has special challenges. To address these challenges, a highly portable chlorine dioxide (ClO2) gas generation system was used to ascertain the ability of a gaseous preparation to inactivate a viral agent, the MS2 bacteriophage, when associated with potentially porous fomites of cloth, paper towel, and wood. The MS2 bacteriophage is increasingly used as a model to identify means of inactivating infectious viral agents of significance to humans. Studies showed that MS2 bacteriophage can be applied to and subsequently recovered from potential porous fomites such as cloth, paper towel, and wood. Paired with viral plaque assays, this provided a means for assessing the ability of gaseous ClO2 to inactivate bacteriophage associated with the porous materials. Notable results include 100% inactivation of 6 log bacteriophage after overnight exposure to 20 parts per million(ppm) ClO2. Reducing exposure time to 90 minutes and gas ppm to lower concentrations proved to remain effective in bacteriophage elimination in association with porous materials. Stepwise reduction in gas concentration from 76 ppm to 5 ppm consistently resulted in greater than 99.99% to 100% reduction of recoverable bacteriophage. This model suggests the potential of ClO2 gas deployment systems for use in the inactivation of viral agents associated with porous potential fomites. The ClO2 gas could prove especially helpful in disinfecting enclosed areas containing viral contaminated surfaces, rather than manually spraying and wiping them.


Asunto(s)
Bacteriófagos , Compuestos de Cloro , Desinfectantes , Humanos , Desinfección , Cloro , Desinfectantes/farmacología , Fómites , Porosidad , Óxidos/farmacología , Compuestos de Cloro/farmacología
6.
ACS ES T Water ; 3(3): 783-792, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36936519

RESUMEN

Insensitive munitions formulations that include 3-nitro-1,2,4-triazol-5-one (NTO) are replacing traditional explosive compounds. While these new formulations have superior safety characteristics, the compounds have greater environmental mobility, raising concern over potential contamination and cleanup of training and manufacturing facilities. Here, we examine the mechanisms and products of NTO photolysis in simulated sunlight to further inform NTO degradation in sunlit surface waters. We demonstrate that NTO produces singlet oxygen and that dissolved oxygen increases the NTO photolysis rate in deionized water. The rate of NTO photolysis is independent of concentration and decreases slightly in the presence of Suwannee River Natural Organic Matter. The apparent quantum yield of NTO generally decreases as pH increases, ranging from 2.0 × 10-5 at pH 12 to 1.3 × 10-3 at pH 2. Bimolecular reaction rate constants for NTO with singlet oxygen and hydroxyl radical were measured to be (1.95 ± 0.15) × 106 and (3.28 ± 0.23) × 1010 M-1 s-1, respectively. Major photolysis reaction products were ammonium, nitrite, and nitrate, with nitrite produced in nearly stoichiometric yield upon the reaction of NTO with singlet oxygen. Environmental half-lives are predicted to span from 1.1 to 5.7 days. Taken together, these data enhance our understanding of NTO photolysis under environmentally relevant conditions.

7.
Nutrients ; 15(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36839327

RESUMEN

Maternal obesity during pregnancy adversely impacts offspring health, predisposing them to chronic metabolic diseases characterized by insulin resistance, dysregulated macronutrient metabolism, and lipid overload, such as metabolic-associated fatty liver disease (MAFLD). Choline is a semi-essential nutrient involved in lipid and one-carbon metabolism that is compromised during MAFLD progression. Here, we investigated under high-fat (HF) obesogenic feeding how maternal choline supplementation (CS) influenced the hepatic lipidome of mouse offspring. Our results demonstrate that maternal HF+CS increased relative abundance of a subclass of phospholipids called plasmalogens in the offspring liver at both embryonic day 17.5 and after 6 weeks of postnatal HF feeding. Consistent with the role of plasmalogens as sacrificial antioxidants, HF+CS embryos were presumably protected with lower oxidative stress. After postnatal HF feeding, the maternal HF+CS male offspring also had higher relative abundance of both sphingomyelin d42:2 and its side chain, nervonic acid (FA 24:1). Nervonic acid is exclusively metabolized in the peroxisome and is tied to plasmalogen synthesis. Altogether, this study demonstrates that under the influence of obesogenic diet, maternal CS modulates the fetal and postnatal hepatic lipidome of male offspring, favoring plasmalogen synthesis, an antioxidative response that may protect the mouse liver from damages due to HF feeding.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Humanos , Embarazo , Femenino , Masculino , Ratones , Animales , Obesidad/metabolismo , Plasmalógenos , Colina/metabolismo , Obesidad Materna/metabolismo , Lipidómica , Dieta Alta en Grasa , Hígado/metabolismo , Suplementos Dietéticos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Vitaminas/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal/metabolismo
8.
J Biomed Mater Res A ; 111(8): 1120-1134, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36606330

RESUMEN

Core decompression (CD) with mesenchymal stromal cells (MSCs) is an effective therapy for early-stage osteonecrosis of the femoral head (ONFH). Preconditioning of MSCs, using inflammatory mediators, is widely used in immunology and various cell therapies. We developed a three-dimensional printed functionally graded scaffold (FGS), made of ß-TCP and PCL, for cell delivery at a specific location. The present study examined the efficacy of CD treatments with genetically modified (GM) MSCs over-expressing PDGF-BB (PDGF-MSCs) or GM MSCs co-over-expressing IL-4 and PDGF-BB and preconditioned for three days of exposure to lipopolysaccharide and tumor necrosis factor-alpha (IL-4-PDGF-pMSCs) using the FGS for treating steroid-induced ONFH in rabbits. We compared CD without cell-therapy, with IL-4-PDGF-pMSCs alone, and with FGS loaded with PDGF-MSCs or IL-4-PDGF-pMSCs. For the area inside the CD, the bone volume in the CD alone was higher than in both FGS groups. The IL-4-PDGF-pMSCs alone and FGS + PDGF-MSCs reduced the occurrence of empty lacunae and improved osteoclastogenesis. There was no significant difference in angiogenesis among the four groups. The combined effect of GM MSCs or pMSCs and the FGS was not superior to the effect of each alone. To establish an important adjunctive therapy for CD for early ONFH in the future, it is necessary and essential to develop an FGS that delivers biologics appropriately and provides structural and mechanical support.


Asunto(s)
Células Madre Mesenquimatosas , Osteonecrosis , Animales , Conejos , Cabeza Femoral/patología , Cabeza Femoral/cirugía , Becaplermina , Interleucina-4/farmacología , Regeneración Ósea , Células Madre Mesenquimatosas/patología , Corticoesteroides/farmacología , Osteonecrosis/inducido químicamente , Osteonecrosis/terapia , Osteonecrosis/patología
9.
Arthroscopy ; 39(4): 922-930, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36343768

RESUMEN

PURPOSE: The purpose of the current study was to create a dynamic cadaveric shoulder model to determine the effect of graft fixation angle on shoulder biomechanics following SCR and to assess which commonly used fixation angle (30° vs 45° of abduction) results in superior glenohumeral biomechanics. METHODS: Twelve fresh-frozen cadaveric shoulders were evaluated using a dynamic shoulder testing system. Humeral head translation, subacromial and glenohumeral contact pressures were compared among 4 conditions: 1) Intact, 2) Irreparable supra- and infraspinatus tendon tear, 3) SCR using acellular dermal allograft (ADA) fixation at 30° of abduction, and 4) SCR with ADA fixation at 45° of abduction. RESULTS: SCR at both 30° (0.287 mm, CI: -0.480 - 1.05 mm; P < .0001) and 45° (0.528 mm, CI: -0.239-1.305 mm; P = .0006) significantly decreased superior translation compared to the irreparably torn state. No significant changes in subacromial peak contact pressure were observed between any states. The average glenohumeral contact pressure increased significantly following creation of an irreparable RCT (373 kPa, CI: 304-443 vs 283 kPa, CI 214-352; P = .0147). The SCR performed at 45° (295 kPa, CI: 226-365, P = .0394) of abduction significantly decreased the average glenohumeral contact pressure compared to the RCT state. There was no statistically significant difference between the average glenohumeral contact pressure of the intact state and SCR at 30° and 45°. CONCLUSION: SCR improved the superior stability of the glenohumeral joint when the graft was secured at 30° or 45° of glenohumeral abduction. Fixation at 45° of glenohumeral abduction provided more stability than did fixation at 30°. CLINICAL RELEVANCE: Grafts attached at 45° of glenohumeral abduction biomechanically restore the glenohumeral stability after SCR using ADA better than fixation at 30° of glenohumeral abduction.


Asunto(s)
Laceraciones , Lesiones del Manguito de los Rotadores , Articulación del Hombro , Humanos , Lesiones del Manguito de los Rotadores/cirugía , Articulación del Hombro/cirugía , Manguito de los Rotadores/cirugía , Fenómenos Biomecánicos , Aloinjertos , Cadáver , Rango del Movimiento Articular
10.
Arthrosc Sports Med Rehabil ; 4(6): e2011-e2018, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36579044

RESUMEN

Purpose: A paucity of data exists on the treatment of pediatric lateral meniscus root tears (LMPRTs). This study aims to characterize the biomechanics of the lateral knee joint in pediatric cadavers following LMPRT and root repair. Our hypotheses were: (1) compared with the intact state, LMPRT would be associated with decreased contact area; (2) compared with the intact state, LMPRT would be associated with increased contact pressures; and (3) compared with LMPRT, root repair would restore contact area and pressures toward intact meniscus values. Methods: Eight cadaver knees (ages 8-12 years) underwent contact area and pressure testing of the lateral compartment. Tekscan pressure mapping sensors covering the tibial plateau were inserted underneath the lateral meniscus. Appropriate pressure load equivalents were applied by a robot at degrees of flexion: 0, 30, 60. Three meniscus conditions were tested: (1) intact, (2) complete root tear, and (3) repaired root tear. Root repairs were performed with transtibial pullout sutures. Statistical analysis was performed. Results: Root tear significantly decreased mean contact area at 30° (P = .0279) and 60° (P = .0397). Root repair increased mean contact area and did not significantly differ from intact states. Differences in contact pressures between meniscus states were not statistically significant. Relative to the intact state. the greatest increase in contact pressures occurred between 0° and 30°. Root repair decreased mean contact pressures at 0° and 30°. At 60°, mean contact pressures of the repair state were closer in magnitude to the tear state than the intact state. Conclusions: LMPRT decreases contact area and increases contact pressures in the lateral knee compartment. Repair of LMPRT improves tibiofemoral contact area at high (>30°) degrees of flexion and contact pressures at low (<30°) degrees of flexion. Clinical Relevance: Transosseous pullout repair is a clinically validated treatment for LMPRT. This study provides baseline biomechanics data of transtibial pullout repair of pediatric LMPRTs.

11.
J Phys Chem A ; 126(47): 8781-8798, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36346943

RESUMEN

This Feature Article starts highlighting some recent experimental and theoretical advances in the field of IR and Raman spectroscopy, giving a taste of the breadth and dynamics of this striving field. The local mode theory is then reviewed, showing how local vibrational modes are derived from fundamental normal modes. New features are introduced that add to current theoretical efforts: (i) a unique measure of bond strength based on local mode force constants ranging from bonding in single molecules in different environments to bonding in periodic systems and crystals and (ii) a new way to interpret vibrational spectra by pinpointing and probing interactions between particular bond stretching contributions to the normal modes. All of this represents a means to work around the very nature of normal modes, namely that the vibrational motions in polyatomic molecules are delocalized. Three current focus points of the local mode analysis are reported, demonstrating how the local mode analysis extracts important information hidden in vibrational spectroscopy data supporting current experiments: (i) metal-ligand bonding in heme proteins, such as myoglobin and neuroglobin; (ii) disentanglement of DNA normal modes; and (iii) hydrogen bonding in water clusters and ice. Finally, the use of the local mode analysis by other research groups is summarized. Our vision is that in the future local mode analysis will be routinely applied by the community and that this Feature Article serves as an incubator for future collaborations between experiment and theory.


Asunto(s)
Espectrometría Raman , Vibración , Enlace de Hidrógeno , Agua/química , ADN/química
12.
Protein J ; 41(4-5): 444-456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35913554

RESUMEN

Using molecular dynamics simulations, the protein-protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein-protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein-protein complexes were studied. The protein-protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design.


Asunto(s)
Evolución Molecular , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/química , Humanos , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
13.
J Arthroplasty ; 37(7): 1326-1332.e3, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35248753

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) is associated with increased complication risk after elective arthroplasty. The purpose of this study is to examine the impact of HCV and prearthroplasty antiviral treatment on complications following total hip arthroplasty (THA). METHODS: A retrospective matched cohort study was conducted using an administrative claims database. In total, 6,883 HCV patients were matched 1:3 with 20,694 noninfected controls, and 920 HCV patients with antiviral treatment before THA (treated HCV) were matched 1:4 with 3,820 HCV patients without treatment (untreated HCV). Rates of 90-day medical complications and joint complications within 2 years postoperatively were compared with multivariable logistic regression. RESULTS: HCV patients exhibited significantly increased rates of medical complications within 90 days compared to noninfected controls (all P < .01). At 2 years postoperatively, HCV patients also exhibited significantly higher risk of revision THA (odds ratio [OR] 1.81), dislocation (OR 2.06), mechanical complications (OR 1.40), periprosthetic fracture (OR 1.76), and prosthetic joint infection (PJI) (OR 1.79). However, treated HCV patients exhibited statistically comparable risk of all joint complications at 2 years postoperatively relative to controls (all P > .05). Compared to untreated HCV patients, treated HCV patients exhibited significantly lower risk of inpatient readmission within 90 days (OR 0.58) and PJI at 2 years postoperatively (OR 0.62). CONCLUSION: HCV patients exhibit significantly increased risk of medical and joint complications following THA relative to controls, though prearthroplasty antiviral treatment mitigates complication risk. Treated HCV patients exhibited significantly lower risk of inpatient readmission and PJI compared to untreated HCV patients. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Artritis Infecciosa , Artroplastia de Reemplazo de Cadera , Hepatitis C , Antivirales/uso terapéutico , Artritis Infecciosa/etiología , Artroplastia de Reemplazo de Cadera/efectos adversos , Estudios de Cohortes , Hepacivirus , Hepatitis C/complicaciones , Hepatitis C/tratamiento farmacológico , Humanos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Estudios Retrospectivos , Factores de Riesgo
14.
Front Nutr ; 9: 841787, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35165655

RESUMEN

Maternal methyl donor supplementation during pregnancy has demonstrated lasting influence on offspring DNA methylation. However, it is unknown whether an adverse postnatal environment, such as high-fat (HF) feeding, overrides the influence of prenatal methyl donor supplementation on offspring epigenome. In this study, we examined whether maternal supplementation of choline (CS), a methyl donor, interacts with prenatal and postnatal HF feeding to alter global and site-specific DNA methylation in offspring. We fed wild-type C57BL/6J mouse dams a HF diet with or without CS throughout gestation. After weaning, the offspring were exposed to HF feeding for 6 weeks resembling a continued obesogenic environment. Our results suggest that maternal CS under the HF condition (HFCS) increased global DNA methylation and DNA methyltransferase 1 (Dnmt1) expression in both fetal liver and brain. However, during the postnatal period, HFCS offspring demonstrated lower global DNA methylation and Dnmt1 expression was unaltered in both the liver and visceral adipose tissue. Site-specific DNA methylation analysis during both fetal and postnatal periods demonstrated that HFCS offspring had higher methylation of CpGs in the promoter of Srebf1, a key mediator of de novo lipogenesis. In conclusion, the influence of maternal CS on offspring DNA methylation is specific to HF feeding status during prenatal and postnatal periods. Without continued CS during the postnatal period, global DNA methylation enhanced by prenatal CS in the offspring was overridden by postnatal HF feeding.

15.
Radiology ; 302(2): 309-316, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34812674

RESUMEN

Background Separate noncontrast CT to quantify the coronary artery calcium (CAC) score often precedes coronary CT angiography (CTA). Quantifying CAC scores directly at CTA would eliminate the additional radiation produced at CT but remains challenging. Purpose To quantify CAC scores automatically from a single CTA scan. Materials and Methods In this retrospective study, a deep learning method to quantify CAC scores automatically from a single CTA scan was developed on training and validation sets of 292 patients and 73 patients collected from March 2019 to July 2020. Virtual noncontrast scans obtained with a spectral CT scanner were used to develop the algorithm to alleviate tedious manual annotation of calcium regions. The proposed method was validated on an independent test set of 240 CTA scans collected from three different CT scanners from August 2020 to November 2020 using the Pearson correlation coefficient, the coefficient of determination, or r2, and the Bland-Altman plot against the semiautomatic Agatston score at noncontrast CT. The cardiovascular risk categorization performance was evaluated using weighted κ based on the Agatston score (CAC score risk categories: 0-10, 11-100, 101-400, and >400). Results Two hundred forty patients (mean age, 60 years ± 11 [standard deviation]; 146 men) were evaluated. The positive correlation between the automatic deep learning CTA and semiautomatic noncontrast CT CAC score was excellent (Pearson correlation = 0.96; r2 = 0.92). The risk categorization agreement based on deep learning CTA and noncontrast CT CAC scores was excellent (weighted κ = 0.94 [95% CI: 0.91, 0.97]), with 223 of 240 scans (93%) categorized correctly. All patients who were miscategorized were in the direct neighboring risk groups. The proposed method's differences from the noncontrast CT CAC score were not statistically significant with regard to scanner (P = .15), sex (P = .051), and section thickness (P = .67). Conclusion A deep learning automatic calcium scoring method accurately quantified coronary artery calcium from CT angiography images and categorized risk. © RSNA, 2021 See also the editorial by Goldfarb and Cao et al in this issue.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Aprendizaje Profundo , Calcificación Vascular/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
16.
Protein Sci ; 30(11): 2206-2220, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34558135

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a pathogenic coronavirus causing COVID-19 infection. The interaction between the SARS-CoV-2 spike protein and the human receptor angiotensin-converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide-thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID-19. However, the molecular-level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID-19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID-19 infection or reducing the severity of the disease.


Asunto(s)
COVID-19 , Estrés Oxidativo/efectos de los fármacos , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad , Internalización del Virus/efectos de los fármacos , Vitamina D/uso terapéutico , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/patología , COVID-19/prevención & control , Humanos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Stem Cell Res Ther ; 12(1): 503, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526115

RESUMEN

BACKGROUND: Approximately one third of patients undergoing core decompression (CD) for early-stage osteonecrosis of the femoral head (ONFH) experience progression of the disease, and subsequently require total hip arthroplasty (THA). Thus, identifying adjunctive treatments to optimize bone regeneration during CD is an unmet clinical need. Platelet-derived growth factor (PDGF)-BB plays a central role in cell growth and differentiation. The aim of this study was to characterize mesenchymal stromal cells (MSCs) that were genetically modified to overexpress PDGF-BB (PDGF-BB-MSCs) in vitro and evaluate their therapeutic effect when injected into the bone tunnel at the time of CD in an in vivo rabbit model of steroid-associated ONFH. METHODS: In vitro studies: Rabbit MSCs were transduced with a lentivirus vector carrying the human PDGF-BB gene under the control of either the cytomegalovirus (CMV) or phosphoglycerate (PGK) promoter. The proliferative rate, PDGF-BB expression level, and osteogenic differentiation capacity of unmodified MSCs, CMV-PDGF-BB-MSCs, and PGK-PDGF-BB-MSCs were assessed. In vivo studies: Twenty-four male New Zealand white rabbits received an intramuscular (IM) injection of methylprednisolone 20 mg/kg. Four weeks later, the rabbits were divided into four groups: the CD group, the hydrogel [HG, (a collagen-alginate mixture)] group, the MSC group, and the PGK-PDGF-BB-MSC group. Eight weeks later, the rabbits were sacrificed, their femurs were harvested, and microCT, mechanical testing, and histological analyses were performed. RESULTS: In vitro studies: PGK-PDGF-BB-MSCs proliferated more rapidly than unmodified MSCs (P < 0.001) and CMV-PDGF-BB-MSCs (P < 0.05) at days 3 and 7. CMV-PDGF-BB-MSCs demonstrated greater PDGF-BB expression than PGK-PDGF-BB-MSCs (P < 0.01). However, PGK-PDGF-BB-MSCs exhibited greater alkaline phosphatase staining at 14 days (P < 0.01), and osteogenic differentiation at 28 days (P = 0.07) than CMV-PDGF-BB-MSCs. In vivo: The PGK-PDGF-BB-MSC group had a trend towards greater bone mineral density (BMD) than the CD group (P = 0.074). The PGK-PDGF-BB-MSC group demonstrated significantly lower numbers of empty lacunae (P < 0.001), greater osteoclast density (P < 0.01), and greater angiogenesis (P < 0.01) than the other treatment groups. CONCLUSION: The use of PGK-PDGF-BB-MSCs as an adjunctive treatment with CD may reduce progression of osteonecrosis and enhance bone regeneration and angiogenesis in the treatment of early-stage ONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Células Madre Mesenquimatosas , Osteonecrosis , Animales , Becaplermina , Descompresión , Cabeza Femoral , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/terapia , Humanos , Masculino , Osteogénesis , Conejos , Esteroides
18.
PLoS Pathog ; 17(8): e1009869, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34415955

RESUMEN

The Lyme disease spirochete Borrelia burgdorferi relies on uptake of essential nutrients from its host environments for survival and infection. Therefore, nutrient acquisition mechanisms constitute key virulence properties of the pathogen, yet these mechanisms remain largely unknown. In vivo expression technology applied to B. burgdorferi (BbIVET) during mammalian infection identified gene bb0562, which encodes a hypothetical protein comprised of a conserved domain of unknown function, DUF3996. DUF3996 is also found across adjacent encoded hypothetical proteins BB0563 and BB0564, suggesting the possibility that the three proteins could be functionally related. Deletion of bb0562, bb0563 and bb0564 individually and together demonstrated that bb0562 alone was important for optimal disseminated infection in immunocompetent and immunocompromised mice by needle inoculation and tick bite transmission. Moreover, bb0562 promoted spirochete survival during the blood dissemination phase of infection. Gene bb0562 was also found to be important for spirochete growth in low serum media and the growth defect of Δbb0562 B. burgdorferi was rescued with the addition of various long chain fatty acids, particularly oleic acid. In mammals, fatty acids are primarily stored in fat droplets in the form of triglycerides. Strikingly, addition of glyceryl trioleate, the triglyceride form of oleic acid, to the low serum media did not rescue the growth defect of the mutant, suggesting bb0562 may be important for the release of fatty acids from triglycerides. Therefore, we searched for and identified two canonical GXSXG lipase motifs within BB0562, despite the lack of homology to known bacterial lipases. Purified BB0562 demonstrated lipolytic activity dependent on the catalytic serine residues within the two motifs. In sum, we have established that bb0562 is a novel nutritional virulence determinant, encoding a lipase that contributes to fatty acid scavenge for spirochete survival in environments deficient in free fatty acids including the mammalian host.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Grasos/deficiencia , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Lipasa/metabolismo , Enfermedad de Lyme/microbiología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Borrelia burgdorferi/fisiología , Femenino , Ixodes/microbiología , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos NOD , Factores de Virulencia/genética
19.
Trends Endocrinol Metab ; 32(8): 579-593, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34210607

RESUMEN

One carbon metabolism (OCM) is critical for early development, as it provides one carbon (1C) units for the biosynthesis of DNA, proteins, and lipids and epigenetic modification of the genome. Epigenetic marks established early in life can be maintained and exert lasting impacts on gene expression and functions later in life. Animal and human studies have increasingly demonstrated that prenatal 1C nutrient deficiencies impair fetal growth, neurodevelopment, and cardiometabolic parameters in childhood, while sufficient maternal 1C nutrient intake is protective against these detrimental outcomes. However, recent studies also highlight the potential risk of maternal 1C nutrient excess or imbalance in disrupting early development. Further studies are needed to delineate the dose-response relationship among prenatal 1C nutrient exposure, epigenetic modifications, and developmental outcomes.


Asunto(s)
Dieta , Epigénesis Genética , Desarrollo Fetal , Animales , Carbono/metabolismo , Metilación de ADN , Femenino , Humanos , Embarazo
20.
Biomaterials ; 275: 120972, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34186237

RESUMEN

Cell-based therapy for augmentation of core decompression (CD) using mesenchymal stromal cells (MSCs) is a promising treatment for early stage osteonecrosis of the femoral head (ONFH). Recently, the therapeutic potential for immunomodulation of osteogenesis using preconditioned (with pro-inflammatory cytokines) MSCs (pMSCs), or by the timely resolution of inflammation using MSCs that over-express anti-inflammatory cytokines has been described. Here, pMSCs exposed to tumor necrosis factor-alpha and lipopolysaccharide for 3 days accelerated osteogenic differentiation in vitro. Furthermore, injection of pMSCs encapsulated with injectable hydrogels into the bone tunnel facilitated angiogenesis and osteogenesis in the femoral head in vivo, using rabbit bone marrow-derived MSCs and a model of corticosteroid-associated ONFH in rabbits. In contrast, in vitro and in vivo studies demonstrated that genetically-modified MSCs that over-express IL4 (IL4-MSCs), established by using a lentiviral vector carrying the rabbit IL4 gene under the cytomegalovirus promoter, accelerated proliferation of MSCs and decreased the percentage of empty lacunae in the femoral head. Therefore, adjunctive cell-based therapy of CD using pMSCs and IL4-MSCs may hold promise to heal osteonecrotic lesions in the early stage ONFH. These interventions must be applied in a temporally sensitive fashion, without interfering with the mandatory acute inflammatory phase of bone healing.


Asunto(s)
Corticoesteroides/efectos adversos , Necrosis de la Cabeza Femoral , Células Madre Mesenquimatosas , Animales , Médula Ósea , Cabeza Femoral , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/terapia , Interleucina-4 , Osteogénesis , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...