Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
3.
Bone Marrow Transplant ; 56(12): 2997-3007, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34480120

RESUMEN

Long-term outcomes after allogeneic hematopoietic cell transplantation (HCT) for therapy-related myeloid neoplasms (tMNs) are dismal. There are few multicenter studies defining prognostic factors in pediatric patients with tMNs. We have accumulated the largest cohort of pediatric patients who have undergone HCT for a tMN to perform a multivariate analysis defining factors predictive of long-term survival. Sixty-eight percent of the 401 patients underwent HCT using a myeloablative conditioning (MAC) regimen, but there were no statistically significant differences in the overall survival (OS), event-free survival (EFS), or cumulative incidence of relapse and non-relapse mortality based on the conditioning intensity. Among the recipients of MAC regimens, 38.4% of deaths were from treatment-related causes, especially acute graft versus host disease (GVHD) and end-organ failure, as compared to only 20.9% of deaths in the reduced-intensity conditioning (RIC) cohort. Exposure to total body irradiation (TBI) during conditioning and experiencing grade III/IV acute GVHD was associated with worse OS. In addition, a diagnosis of therapy-related myelodysplastic syndrome and having a structurally complex karyotype at tMN diagnosis were associated with worse EFS. Reduced-toxicity (but not reduced-intensity) regimens might help to decrease relapse while limiting mortality associated with TBI-based HCT conditioning in pediatric patients with tMNs.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Niño , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia Mieloide Aguda/complicaciones , Recurrencia Local de Neoplasia , Estudios Retrospectivos , Acondicionamiento Pretrasplante/efectos adversos
4.
NPJ Regen Med ; 6(1): 25, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001907

RESUMEN

Human pluripotent stem cells (hPSCs) can generate specialized cell lineages that have great potential for regenerative therapies and disease modeling. However, the developmental stage of the lineages generated from conventional hPSC cultures in vitro are embryonic in phenotype, and may not possess the cellular maturity necessary for corrective regenerative function in vivo in adult recipients. Here, we present the scientific evidence for how adult human tissues could generate human-animal interspecific chimeras to solve this problem. First, we review the phenotypes of the embryonic lineages differentiated from conventional hPSC in vitro and through organoid technologies and compare their functional relevance to the tissues generated during normal human in utero fetal and adult development. We hypothesize that the developmental incongruence of embryo-stage hPSC-differentiated cells transplanted into a recipient adult host niche is an important mechanism ultimately limiting their utility in cell therapies and adult disease modeling. We propose that this developmental obstacle can be overcome with optimized interspecies chimeras that permit the generation of adult-staged, patient-specific whole organs within animal hosts with human-compatible gestational time-frames. We suggest that achieving this goal may ultimately have to await the derivation of alternative, primitive totipotent-like stem cells with improved embryonic chimera capacities. We review the scientific challenges of deriving alternative human stem cell states with expanded embryonic potential, outline a path forward for conducting this emerging research with appropriate ethical and regulatory oversight, and defend the case of why current federal funding restrictions on this important category of biomedical research should be liberalized.

5.
Nat Commun ; 11(1): 1195, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139672

RESUMEN

Here, we report that the functionality of vascular progenitors (VP) generated from normal and disease-primed conventional human induced pluripotent stem cells (hiPSC) can be significantly improved by reversion to a tankyrase inhibitor-regulated human naïve epiblast-like pluripotent state. Naïve diabetic vascular progenitors (N-DVP) differentiated from patient-specific naïve diabetic hiPSC (N-DhiPSC) possessed higher vascular functionality, maintained greater genomic stability, harbored decreased lineage-primed gene expression, and were more efficient in migrating to and re-vascularizing the deep neural layers of the ischemic retina than isogenic diabetic vascular progenitors (DVP). These findings suggest that reprogramming to a stable naïve human pluripotent stem cell state may effectively erase dysfunctional epigenetic donor cell memory or disease-associated aberrations in patient-specific hiPSC. More broadly, tankyrase inhibitor-regulated naïve hiPSC (N-hiPSC) represent a class of human stem cells with high epigenetic plasticity, improved multi-lineage functionality, and potentially high impact for regenerative medicine.


Asunto(s)
Vasos Sanguíneos/patología , Diabetes Mellitus/patología , Células Madre Pluripotentes Inducidas/patología , Isquemia/terapia , Retina/patología , Células Madre/patología , Tanquirasas/antagonistas & inhibidores , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Daño del ADN , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Código de Histonas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Isquemia/patología , Ratones , Organoides/efectos de los fármacos , Organoides/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Regiones Promotoras Genéticas/genética , Células Madre/efectos de los fármacos , Células Madre/ultraestructura , Tanquirasas/metabolismo , Teratoma/patología , Transcripción Genética/efectos de los fármacos
6.
Biol Blood Marrow Transplant ; 23(2): 325-332, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27888014

RESUMEN

Lower-intensity conditioning regimens for haploidentical blood or marrow transplantation (BMT) are safe and efficacious for adult patients with hematologic malignancies. We report data for pediatric/young adult patients with high-risk hematologic malignancies (n = 40) treated with nonmyeloablative haploidentical BMT with post-transplantation cyclophosphamide from 2003 to 2015. Patients received a preparative regimen of fludarabine, cyclophosphamide, and total body irradiation. Post-transplantation immunosuppression consisted of cyclophosphamide, mycophenolate mofetil, and tacrolimus. Donor engraftment occurred in 29 of 32 (91%), with median time to engraftment of neutrophils >500/µL of 16 days (range, 13 to 22) and for platelets >20,000/µL without transfusion of 18 days (range, 12 to 62). Cumulative incidences of acute graft-versus-host disease (GVHD) grades II to IV and grades III and IV at day 100 were 33% and 5%, respectively. The cumulative incidence of chronic GVHD was 23%, with 7% moderate-to-severe chronic GVHD, according to National Institutes of Health consensus criteria. Transplantation-related mortality (TRM) at 1 year was 13%. The cumulative incidence of relapse at 2 years was 52%. With a median follow-up of 20 months (range, 3 to 148), 1-year actuarial overall and event-free survival were 56% and 43%, respectively. Thus, we demonstrate excellent rates of engraftment, GVHD, and TRM in pediatric/young adult patients treated with this regimen. This approach is a widely available, safe, and feasible option for pediatric and young adult patients with high-risk hematologic malignancies, including those with a prior history of myeloablative BMT and/or those with comorbidities or organ dysfunction that preclude eligibility for myeloablative BMT.


Asunto(s)
Trasplante de Médula Ósea , Ciclofosfamida/uso terapéutico , Neoplasias Hematológicas/terapia , Inmunosupresores/uso terapéutico , Acondicionamiento Pretrasplante/métodos , Adolescente , Aloinjertos , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Enfermedad Injerto contra Huésped/etiología , Histocompatibilidad , Humanos , Lactante , Recién Nacido , Masculino , Síndromes Mielodisplásicos/terapia , Estudios Retrospectivos , Riesgo , Resultado del Tratamiento , Adulto Joven
7.
Pediatr Blood Cancer ; 64(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27650634

RESUMEN

To date, there has been a lack of pediatric experience regarding the efficacy and tolerability of immune checkpoint inhibitors after haploidentical hematopoietic stem cell transplant (HSCT). We present the case of a 22-year-old female with multiple-relapsed Hodgkin lymphoma (HL) who presented with a new relapse after haploidentical (post-haplo) HSCT. Anti-PD-1 therapy with nivolumab resulted in significant objective disease response and clinical improvement without notable side effects, including the absence of a graft-versus-host disease (GVHD). This case report suggests that immune checkpoint inhibition may be safely tolerated even in the setting of haploidentical HSCT, without triggering overt GVHD.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Trasplante de Médula Ósea/efectos adversos , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad de Hodgkin/tratamiento farmacológico , Tolerancia Inmunológica/inmunología , Linfocitos T/efectos de los fármacos , Adulto , Antineoplásicos/uso terapéutico , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad de Hodgkin/terapia , Humanos , Depleción Linfocítica , Nivolumab , Pronóstico , Trasplante Homólogo , Adulto Joven
8.
Stem Cells Int ; 2016: 3826249, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688775

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are reprogrammed from adult or progenitor somatic cells and must make substantial adaptations to ensure genomic stability in order to become "embryonic stem cell- (ESC-) like." The DNA damage response (DDR) is critical for maintenance of such genomic integrity. Herein, we determined whether cell of origin and reprogramming method influence the DDR of hiPSCs. We demonstrate that hiPSCs derived from cord blood (CB) myeloid progenitors (i.e., CB-iPSC) via an efficient high-fidelity stromal-activated (sa) method closely resembled hESCs in DNA repair gene expression signature and irradiation-induced DDR, relative to hiPSCs generated from CB or fibroblasts via standard methods. Furthermore, sa-CB-iPSCs also more closely resembled hESCs in accuracy of nonhomologous end joining (NHEJ), DNA double-strand break (DSB) repair, and C-MYC transcriptional signatures, relative to standard hiPSCs. Our data suggests that hiPSCs derived via more efficient reprogramming methods possess more hESC-like activated MYC signatures and DDR signaling. Thus, an authentic MYC molecular signature may serve as an important biomarker in characterizing the genomic integrity in hiPSCs.

9.
Development ; 143(23): 4368-4380, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27660325

RESUMEN

The derivation and maintenance of human pluripotent stem cells (hPSCs) in stable naïve pluripotent states has a wide impact in human developmental biology. However, hPSCs are unstable in classical naïve mouse embryonic stem cell (ESC) WNT and MEK/ERK signal inhibition (2i) culture. We show that a broad repertoire of conventional hESC and transgene-independent human induced pluripotent stem cell (hiPSC) lines could be reverted to stable human preimplantation inner cell mass (ICM)-like naïve states with only WNT, MEK/ERK, and tankyrase inhibition (LIF-3i). LIF-3i-reverted hPSCs retained normal karyotypes and genomic imprints, and attained defining mouse ESC-like functional features, including high clonal self-renewal, independence from MEK/ERK signaling, dependence on JAK/STAT3 and BMP4 signaling, and naïve-specific transcriptional and epigenetic configurations. Tankyrase inhibition promoted a stable acquisition of a human preimplantation ICM-like ground state via modulation of WNT signaling, and was most efficacious in efficiently reprogrammed conventional hiPSCs. Importantly, naïve reversion of a broad repertoire of conventional hiPSCs reduced lineage-primed gene expression and significantly improved their multilineage differentiation capacities. Stable naïve hPSCs with reduced genetic variability and improved functional pluripotency will have great utility in regenerative medicine and human disease modeling.


Asunto(s)
Diferenciación Celular/fisiología , Autorrenovación de las Células/fisiología , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Tanquirasas/antagonistas & inhibidores , Vía de Señalización Wnt/fisiología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Células Cultivadas , Reprogramación Celular/fisiología , Estratos Germinativos/embriología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Humanos , Quinasas Janus/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Ratones , Factor de Transcripción STAT3/metabolismo
10.
Pediatr Blood Cancer ; 63(7): 1279-82, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26990138

RESUMEN

There are few therapeutic options for patients with T-cell acute lymphoblastic leukemia (T-ALL) who have recurrent disease after initial matched sibling hematopoietic stem cell transplantation. While a second hematopoietic stem cell transplant (HSCT) from a haploidentical donor offers the conceptual possibility of greater graft versus leukemia effect, there is minimal literature to describe the efficacy of this approach in recurrent pediatric T-ALL. We present the case of a now 9-year-old female in whom second haploidentical HSCT, followed by successive donor lymphocyte infusions in response to minimal residual disease reemergence, has led to 3+ years of ongoing disease control without graft versus host disease and excellent quality of life.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Transfusión de Linfocitos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Donante no Emparentado , Aloinjertos , Niño , Femenino , Humanos , Recurrencia
11.
Curr Opin Genet Dev ; 28: 43-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25461449

RESUMEN

A growing body of work has raised concern that many human pluripotent stem cell (hPSC) lines possess tumorigenic potential following differentiation to clinically relevant lineages. In this review, we highlight recent work characterizing the spectrum of cancer-like epigenetic derangements in human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) that are associated with reprogramming errors or prolonged culture that may contribute to such tumorigenicity. These aberrations include cancer-like promoter DNA hypermethylation and histone marks associated with pluripotency, as well as aberrant X-chromosome regulation. We also feature recent work that suggests optimized high-fidelity reprogramming derivation methods can minimize cancer-associated epigenetic aberrations in hPSC, and thus ultimately improve the ultimate clinical utility of hiPSC in regenerative medicine.


Asunto(s)
Epigenómica , Neoplasias/genética , Neoplasias/patología , Células Madre Pluripotentes/patología , Medicina Regenerativa , Cicatrización de Heridas , Animales , Diferenciación Celular , Humanos
12.
BMC Syst Biol ; 8: 29, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24612742

RESUMEN

BACKGROUND: Mesenchymal to Epithelial Transition (MET) plasticity is critical to cancer progression, and we recently showed that the OVOL transcription factors (TFs) are critical regulators of MET. Results of that work also posed the hypothesis that the OVOLs impact MET in a range of cancers. We now test this hypothesis by developing a model, OVOL Induced MET (OI-MET), and sub-model (OI-MET-TF), to characterize differential gene expression in MET common to prostate cancer (PC) and breast cancer (BC). RESULTS: In the OI-MET model, we identified 739 genes differentially expressed in both the PC and BC models. For this gene set, we found significant enrichment of annotation for BC, PC, cancer, and MET, as well as regulation of gene expression by AP1, STAT1, STAT3, and NFKB1. Focusing on the target genes for these four TFs plus the OVOLs, we produced the OI-MET-TF sub-model, which shows even greater enrichment for these annotations, plus significant evidence of cooperation among these five TFs. Based on known gene/drug interactions, we prioritized targets in the OI-MET-TF network for follow-on analysis, emphasizing the clinical relevance of this work. Reflecting these results back to the OI-MET model, we found that binding motifs for the TF pair AP1/MYC are more frequent than expected and that the AP1/MYC pair is significantly enriched in binding in cancer models, relative to non-cancer models, in these promoters. This effect is seen in both MET models (solid tumors) and in non-MET models (leukemia). These results are consistent with our hypothesis that the OVOLs impact cancer susceptibility by regulating MET, and extend the hypothesis to include mechanisms not specific to MET. CONCLUSIONS: We find significant evidence of the OVOL, AP1, STAT1, STAT3, and NFKB1 TFs having important roles in MET, and more broadly in cancer. We prioritize known gene/drug targets for follow-up in the clinic, and we show that the AP1/MYC TF pair is a strong candidate for intervention.


Asunto(s)
Neoplasias de la Mama/patología , Biología Computacional/métodos , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Modelos Biológicos , Neoplasias de la Próstata/patología , Factores de Transcripción/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Anotación de Secuencia Molecular , Terapia Molecular Dirigida , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Unión Proteica
13.
Circulation ; 129(3): 359-72, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24163065

RESUMEN

BACKGROUND: The generation of vascular progenitors (VPs) from human induced pluripotent stem cells (hiPSCs) has great potential for treating vascular disorders such as ischemic retinopathies. However, long-term in vivo engraftment of hiPSC-derived VPs into the retina has not yet been reported. This goal may be limited by the low differentiation yield, greater senescence, and poor proliferation of hiPSC-derived vascular cells. To evaluate the potential of hiPSCs for treating ischemic retinopathies, we generated VPs from a repertoire of viral-integrated and nonintegrated fibroblast and cord blood (CB)-derived hiPSC lines and tested their capacity for homing and engrafting into murine retina in an ischemia-reperfusion model. METHODS AND RESULTS: VPs from human embryonic stem cells and hiPSCs were generated with an optimized vascular differentiation system. Fluorescence-activated cell sorting purification of human embryoid body cells differentially expressing endothelial/pericytic markers identified a CD31(+)CD146(+) VP population with high vascular potency. Episomal CB-induced pluripotent stem cells (iPSCs) generated these VPs with higher efficiencies than fibroblast-iPSC. Moreover, in contrast to fibroblast-iPSC-VPs, CB-iPSC-VPs maintained expression signatures more comparable to human embryonic stem cell VPs, expressed higher levels of immature vascular markers, demonstrated less culture senescence and sensitivity to DNA damage, and possessed fewer transmitted reprogramming errors. Luciferase transgene-marked VPs from human embryonic stem cells, CB-iPSCs, and fibroblast-iPSCs were injected systemically or directly into the vitreous of retinal ischemia-reperfusion-injured adult nonobese diabetic-severe combined immunodeficient mice. Only human embryonic stem cell- and CB-iPSC-derived VPs reliably homed and engrafted into injured retinal capillaries, with incorporation into damaged vessels for up to 45 days. CONCLUSIONS: VPs generated from CB-iPSCs possessed augmented capacity to home, integrate into, and repair damaged retinal vasculature.


Asunto(s)
Células Madre Embrionarias/citología , Sangre Fetal/citología , Células Madre Pluripotentes/citología , Daño por Reperfusión/terapia , Enfermedades de la Retina/terapia , Trasplante de Células Madre/métodos , Animales , Capilares/citología , Senescencia Celular , Daño del ADN , Modelos Animales de Enfermedad , Fibroblastos/citología , Supervivencia de Injerto , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Regeneración , Daño por Reperfusión/patología , Enfermedades de la Retina/patología , Transcriptoma
14.
Biochim Biophys Acta ; 1830(2): 2385-94, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23104383

RESUMEN

BACKGROUND: Induced pluripotent stem cells (iPSC) derived from reprogrammed patient somatic cells possess enormous therapeutic potential. However, unlocking the full capabilities of iPSC will require an improved understanding of the molecular mechanisms which govern the induction and maintenance of pluripotency, as well as directed differentiation to clinically relevant lineages. Induced pluripotency of a differentiated cell is mediated by sequential cascades of genetic and epigenetic reprogramming of somatic histone and DNA CpG methylation marks. These genome-wide changes are mediated by a coordinated activity of transcription factors and epigenetic modifying enzymes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are now recognized as an important third class of regulators of the pluripotent state. SCOPE OF REVIEW: This review surveys the currently known roles and mechanisms of ncRNAs in regulating the embryonic and induced pluripotent states. MAJOR CONCLUSIONS: Through a variety of mechanisms, ncRNAs regulate constellations of key pluripotency genes and epigenetic regulators, and thus critically determine induction and maintenance of the pluripotent state. GENERAL SIGNIFICANCE: A further understanding of the roles of ncRNAs in regulating pluripotency may help assess the quality of human iPSC reprogramming. Additionally, ncRNA biology may help decipher potential transcriptional and epigenetic commonalities between the self renewal processes that govern both ESC and tumor initiating cancer stem cells (CSC). This article is part of a Special Issue entitled Biochemistry of Stem Cells.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , ARN no Traducido/fisiología , Islas de CpG , Metilación de ADN , Humanos
15.
PLoS One ; 7(8): e42838, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22905176

RESUMEN

Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (~0.001%-0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ~50% in purified episome-expressing cells. Lineage-committed CD33(+)CD45(+)CD34(-) myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG(+)TRA-1-81(+) hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self-renewal and differentiation in both hematopoietic progenitors and ESC.


Asunto(s)
Reprogramación Celular , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Mieloides/citología , Células Madre/citología , Animales , Antígenos CD34/biosíntesis , Linaje de la Célula , Separación Celular , Técnicas de Cocultivo , Biología Computacional/métodos , Fibroblastos/citología , Citometría de Flujo , Humanos , Queratinocitos/citología , Antígenos Comunes de Leucocito/biosíntesis , Ratones , FN-kappa B/metabolismo , Lectina 3 Similar a Ig de Unión al Ácido Siálico/biosíntesis , Transducción de Señal
16.
Proc Natl Acad Sci U S A ; 106(19): 7921-6, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-19416882

RESUMEN

Regulation of age-related changes in gene expression underlies many diseases. We previously discovered the first puberty-onset gene switch, the age-related stability element (ASE)/age-related increase element (AIE)-mediated genetic mechanism for age-related gene regulation. Here, we report that this mechanism underlies the mysterious puberty-onset amelioration of abnormal bleeding seen in hemophilia B Leyden. Transgenic mice robustly mimicking the Leyden phenotype were constructed. Analysis of these animals indicated that ASE plays a central role in the puberty-onset amelioration of the disease. Human factor IX expression in these animals was reproducibly nullified by hypophysectomy, but nearly fully restored by administration of growth hormone, being consistent with the observed sex-independent recovery of factor IX expression. Ets1 was identified as the specific liver nuclear protein binding only to the functional ASE, G/CAGGAAG, and not to other Ets consensus elements. This study demonstrates the clinical relevance of the first discovered puberty-onset gene switch, the ASE/AIE-mediated regulatory mechanism.


Asunto(s)
Envejecimiento , Factor IX/genética , Hemofilia A/genética , Hemofilia A/terapia , Homeostasis , Animales , Femenino , Regulación de la Expresión Génica , Hormona del Crecimiento/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Unión Proteica , Factores Sexuales , Factores de Tiempo
17.
Endocrinology ; 150(8): 3645-54, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19406940

RESUMEN

For insight into transcriptional mechanisms mediating physiological responses to GH, data mining was performed on a profile of GH-regulated genes induced or inhibited at different times in highly responsive 3T3-F442A adipocytes. Gene set enrichment analysis indicated that GH-regulated genes are enriched in pathways including phosphoinositide and insulin signaling and suggested that suppressor of cytokine signaling 2 (SOCS2) and phosphoinositide 3' kinase regulatory subunit p85alpha (Pik3r1) are important targets. Model-based Chinese restaurant clustering identified a group of genes highly regulated by GH at times consistent with its key physiological actions. This cluster included IGF-I, phosphoinositide 3' kinase p85alpha, SOCS2, and cytokine-inducible SH2-containing protein. It also contains the most strongly repressed gene in the profile, B cell lymphoma 6 (Bcl6), a transcriptional repressor. Quantitative real-time PCR verified the strong decrease in Bcl6 mRNA after GH treatment and induction of the other genes in the cluster. Transcriptional network analysis of the genes implicated signal transducer and activator of transcription (Stat) 5 as hub regulating the most responsive genes, Igf1, Socs2, Cish, and Bcl6. Transcriptional activation analysis demonstrated that Bcl6 inhibits SOCS2-luciferase and blunts its stimulation by GH. Occupancy of endogenous Bcl6 on SOCS2 DNA decreased after GH treatment, whereas occupancy of Stat5 increased concomitantly. Thus, GH-mediated inhibition of Bcl6 expression may reverse the repression of SOCS2 and facilitate SOCS2 activation by GH. Together these analyses identify Bcl6 as a participant in GH-regulated gene expression and suggest an interplay between the repressor Bcl6 and the activator Stat5 in regulating genes, which contribute to GH responses.


Asunto(s)
Biología Computacional/métodos , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hormona del Crecimiento/farmacología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Immunoblotting , Ratones , Proteínas Proto-Oncogénicas c-bcl-6 , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/fisiología , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
18.
Mol Endocrinol ; 22(2): 454-76, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17947375

RESUMEN

Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.


Asunto(s)
Proteínas Portadoras/genética , Diferenciación Celular/efectos de los fármacos , Metaloproteinasa 10 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/genética , Factores de Crecimiento Nervioso/farmacología , Receptores de Superficie Celular/genética , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular , Metaloproteinasa 10 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Modelos Biológicos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Células PC12 , Ratas , Receptores de Superficie Celular/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Mol Genet Metab ; 90(2): 126-33, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17129742

RESUMEN

Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as targets for regulation by hormones and signaling pathways. Evidence that GH regulates transcription at multiple levels is exemplified by analysis of the proto-oncogene c-fos. Among the GH-regulated transcription factors on c-fos, C/EBPbeta appears to be key, since depletion of C/EBPbeta by RNA interference blocks the stimulation of c-fos by GH. The phosphorylation state of C/EBPbeta and its ability to activate transcription are regulated by GH through MAPK and PI3K/Akt-mediated signaling cascades. The acetylation of C/EBPbeta also contributes to its ability to activate c-fos transcription. These and other post-translational modifications of C/EBPbeta appear to be integrated for regulation of transcription by GH. The formation of nuclear proteins into complexes associated with DNA-bound transcription factors is also regulated by GH. Both C/EBPbeta and the co-activator p300 are recruited to c-fos in response to GH, altering c-fos promoter activation. In addition, GH rapidly induces spatio-temporal re-localization of C/EBPbeta within the nucleus. Thus, GH-regulated gene transcription mediated by C/EBPbeta reflects the integration of diverse mechanisms including post-translational modifications, modulation of protein complexes associated with DNA and re-localization of gene regulatory proteins. Similar integration involving other transcription factors, including Stats, appears to be a feature of regulation by GH of other gene targets.


Asunto(s)
Regulación de la Expresión Génica , Hormona del Crecimiento/metabolismo , Transcripción Genética , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Genes fos , Humanos , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proto-Oncogenes Mas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
J Biol Chem ; 281(7): 4132-41, 2006 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-16326703

RESUMEN

In examination of mechanisms regulating metabolic responses to growth hormone (GH), microarray analysis identified 561 probe sets showing time-dependent patterns of expression in GH-treated 3T3-F442A adipocytes. Biological functions significantly over-represented among GH-regulated genes include regulators of transcription at early times, and lipid biosynthesis, cholesterol biosynthesis, and mediators of immune responses at later times (48 h). One novel GH-induced gene encodes activating transcription factor 3 (ATF3). Atf3 mRNA expression and promoter activity were stimulated by GH. Genes for ATF3 and growth arrest and DNA damage-inducible gene 45 gamma (GADD45gamma) showed similar time-dependent patterns of responses to GH, suggesting similar regulatory mechanisms. A conserved sequence in the promoters of the Atf3 and Gadd45gamma genes contains a CCAAT/enhancer-binding protein (C/EBP) site previously observed in the Gadd45gamma promoter, suggesting a novel corresponding C/EBP site in the Atf3 promoter. C/EBPbeta was found to bind to the predicted Atf3 C/EBP site, and C/EBPbeta enhanced the activation of the wild-type Atf3 promoter. Mutation of the predicted Atf3 C/EBP site disrupted Atf3 promoter activation not only by C/EBPbeta but also by GH. These findings suggest that GH regulates transcription of Atf3 through a mechanism utilizing factors, such as C/EBPbeta, which bind to a novel C/EBP site.


Asunto(s)
Factor de Transcripción Activador 3/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/farmacología , Células 3T3 , Adipocitos/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/fisiología , Colesterol/biosíntesis , Ácidos Grasos/biosíntesis , Ratones , Regiones Promotoras Genéticas , Factores de Tiempo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...