Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(34): 23702-23710, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39147598

RESUMEN

The most reported two-dimensional (2D) reconfigurable multivalued logic (RMVL) devices primarily involve a planar configuration and carrier transport, which limits the high-density circuit integration and high-speed logic operation. In this work, the vertical transistors with reconfigurable MoTe2 homojunction are developed for low-power, high-speed, multivalued logic circuits. Through top/bottom dual-gate modulation, the transistors can be configured into four modes: P-i-N, N-i-P, P-i-P, and N-i-N. The reconfigurable rectifying and photovoltaic behaviors are observed in P-i-N and N-i-P configurations, exhibiting ideal diode characteristics with a current rectification ratio over 105 and sign-reversible photovoltaic response with a photoswitching ratio up to 7.44 × 105. Taking advantage of the seamless homogeneous integration and short vertical channel architecture, the transistor can operate as an electrical switch with an ultrafast speed of 680 ns, surpassing the conventional p-n diode. The MoTe2 half-wave rectifier is then applied in high-frequency integrated circuits using both square wave and sinusoidal waveforms. By applying an electrical pulse with a 1/4 phase difference between two input signals, the RMVL circuit has been achieved. This work proposes a universal and reconfigurable vertical transistor, enabled by dual-gate electrostatic doping on top/bottom sides of MoTe2 homojunction, suggesting a high integration device scheme for high-speed RMVL circuits and systems.

2.
ACS Appl Mater Interfaces ; 16(32): 42491-42501, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39099453

RESUMEN

Two-dimensional (2D) van der Waals heterostructures that embody the electronic characteristics of each constituent material have found extensive applications. Alloy engineering further enables the modulation of the electronic properties in these structures. Consequently, we envisage the construction and modulation of composition-dependent antiambipolar transistors (AATs) using van der Waals heterostructures and alloy engineering to advance multivalued inverters. In this work, we calculate the electron structures of SnSe2(1-x)S2x alloys and determine the energy band alignment between SnSe2(1-x)S2x and 2H-MoTe2. We present a series of vertical AATs based on the SnSe2(1-x)S2x/MoTe2 type-III van der Waals heterostructure. These transistors exhibit composition-dependent antiambipolar characteristics through the van der Waals heterostructure, except for the SnSe2/MoTe2 transistor. The peak current (Ipeak) decreases from 43 nA (x = 0.25) to 0.8 nA (x = 1) at Vds = -2 V, while the peak-to-valley current ratio (PVR) increases from 4.5 (x = 0.25) to 6.7 × 103 (x = 1) with a work window ranging from 30 to 47 V. Ultimately, we successfully apply several specific SnSe2(1-x)S2x/MoTe2 devices in binary and ternary logic inverters. Our results underscore the efficacy of alloy engineering in modulating the characteristics of AATs, offering a promising strategy for the development of multivalued logic devices.

3.
Adv Sci (Weinh) ; 11(33): e2401915, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38958519

RESUMEN

Resistive switching memories have garnered significant attention due to their high-density integration and rapid in-memory computing beyond von Neumann's architecture. However, significant challenges are posed in practical applications with respect to their manufacturing process complexity, a leakage current of high resistance state (HRS), and the sneak-path current problem that limits their scalability. Here, a mild-temperature thermal oxidation technique for the fabrication of low-power and ultra-steep memristor based on Ag/TiOx/SnOx/SnSe2/Au architecture is developed. Benefiting from a self-assembled oxidation layer and the formation/rupture of oxygen vacancy conductive filaments, the device exhibits an exceptional threshold switching behavior with high switch ratio exceeding 106, low threshold voltage of ≈1 V, long-term retention of >104 s, an ultra-small subthreshold swing of 2.5 mV decade-1 and high air-stability surpassing 4 months. By decreasing temperature, the device undergoes a transition from unipolar volatile to bipolar nonvolatile characteristics, elucidating the role of oxygen vacancies migration on the resistive switching process. Further, the 1T1R structure is established between a memristor and a 2H-MoTe2 transistor by the van der Waals (vdW) stacking approach, achieving the functionality of selector and multi-value memory with lower power consumption. This work provides a mild-thermal oxidation technology for the low-cost production of high-performance memristors toward future in-memory computing applications.

4.
ACS Appl Mater Interfaces ; 16(29): 38231-38242, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39001805

RESUMEN

The attractive physical properties of two-dimensional (2D) semiconductors in group IVA-VIA have been fully revealed in recent years. Combining them with 2D ambipolar materials to construct van der Waals heterojunctions (vdWHs) can offer tremendous opportunities for designing multifunctional electronic and optoelectronic devices, such as logic switching circuits, half-wave rectifiers, and broad-spectrum photodetectors. Here, an optimized SnSe0.75S0.25 is grown to design a SnSe0.75S0.25/MoTe2 vdWH for logic operation and wide-spectrum photodetection. Benefiting from the excellent gate modulation under the appropriate sulfur substitution and type-II band alignment, the device exhibits reconfigurable antiambipolar and ambipolar transfer behaviors at positive and negative source-drain voltage (Vds), enabling stable XNOR logic operation. It also features a gate-modulated positive and negative rectifying behavior with rectification ratios of 265:1 and 1:196, confirming its potential as half-wave logic rectifiers. Besides, the device can respond from visible to infrared wavelength up to 1400 nm. Under 635 nm illumination, the maximum responsivity of 1.16 A/W and response time of 657/500 µs are achieved at the Vds of -2 V. Furthermore, due to the strong in-plane anisotropic structure of SnSe0.75S0.25-alloyed nanosheet and narrow bandgap of 2H-MoTe2, it shows a broadband polarization-sensitive function with impressive photocurrent anisotropic ratios of 15.6 (635 nm), 7.0 (808 nm), and 3.7 (1310 nm). The direction along the maximum photocurrent can be reconfigurable depending on the wavelengths. These results indicate that our designed alloyed SnSe0.75S0.25/MoTe2 vdWH has reconfigurable logic operation and broadband photodetection capabilities in 2D multifunctional integrated circuits.

5.
Nat Commun ; 15(1): 6261, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048552

RESUMEN

Visual adaptive devices have potential to simplify circuits and algorithms in machine vision systems to adapt and perceive images with varying brightness levels, which is however limited by sluggish adaptation process. Here, the avalanche tuning as feedforward inhibition in bionic two-dimensional (2D) transistor is proposed for fast and high-frequency visual adaptation behavior with microsecond-level accurate perception, the adaptation speed is over 104 times faster than that of human retina and reported bionic sensors. As light intensity changes, the bionic transistor spontaneously switches between avalanche and photoconductive effect, varying responsivity in both magnitude and sign (from 7.6 × 104 to -1 × 103 A/W), thereby achieving ultra-fast scotopic and photopic adaptation process of 108 and 268 µs, respectively. By further combining convolutional neural networks with avalanche-tuned bionic transistor, an adaptative machine vision is achieved with remarkable microsecond-level rapid adaptation capabilities and robust image recognition with over 98% precision in both dim and bright conditions.


Asunto(s)
Redes Neurales de la Computación , Retina , Humanos , Retina/fisiología , Percepción Visual/fisiología , Algoritmos , Biónica/instrumentación , Transistores Electrónicos , Adaptación Ocular/fisiología
6.
ACS Appl Mater Interfaces ; 16(26): 33740-33751, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38907704

RESUMEN

A two-dimensional (2D) broken-gap (type-III) p-n heterojunction has a unique charge transport mechanism because of nonoverlapping energy bands. In light of this, type-III band alignment can be used in tunneling field-effect transistors (TFETs) and Esaki diodes with tunable operation and low consumption by highlighting the advantages of tunneling mechanisms. In recent years, 2D tunneling photodiodes have gradually attracted attention for novel optoelectronic performance with a combination of strong light-matter interaction and tunable band alignment. However, an in-depth understanding of the tunneling mechanisms should be further investigated, especially for developing electronic and optoelectronic applications. Here, we report a type-III tunneling photodiode based on a 2D multilayered p-GeS/n+-SnSe2 heterostructure, which is first fabricated by the mechanical exfoliation and dry transfer method. Through the Simmons approximation, its various tunneling transport mechanisms dependent on bias and light are demonstrated as the origin of excellent bidirectional photoresponse performance. Moreover, compared to the traditional p-n photodiode, the device enables bidirectional photoresponse capability, including maximum responsivity values of 43 and 8.7 A/W at Vds = 1 and -1 V, respectively, with distinctive photoactive regions from the scanning photocurrent mapping. Noticeably, benefiting from the in-plane anisotropic structure of GeS, the device exhibits an enhanced photocurrent anisotropic ratio of 9, driven by the broader depletion region at Vds = -3 V under 635 nm irradiation. Above all, the results suggest that our designed architecture can be potentially applied to CMOS imaging sensors and polarization-sensitive photodetectors.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38684053

RESUMEN

Metal-oxide-semiconductor field-effect transistors as basic electronic devices of integrated circuits have been greatly developed and widely used in the past decades. However, as the thickness of the conducting channel decreases, the interface electronic scattering between the gate oxide layer and the channel significantly impacts the performance of the transistor. To address this issue, van der Waals heterojunction field-effect transistors (vdWJFETs) have been proposed using two-dimensional semiconductors, which utilize the built-in electric field at the sharp van der Waals interface to regulate the channel conductance without the need of a complex gate oxide layer. In this study, a novel dual-junction vdWJFET composed of a MoS2 channel and a Te nanosheet gate has been developed. This device achieves an ultralow subthreshold swing (SS) and an extremely low current hysteresis, greatly surpassing the single-junction vdWJFET. In the transistor, the SS decreases from 475.04 to 68.3 mV dec-1, nearly approaching the theoretical limit of 60 mV dec-1 at room temperature. The pinch-off voltage (Vp) decreases from -4.5 to -0.75 V, with a current hysteresis of ∼10 mV and a considerable field-effect mobility (µ) of 36.43 cm2 V-1 s-1. The novel dual-junction vdWJFET provides a new approach to realize a transistor with a theoretical ideal SS and a negligible current hysteresis toward low-power electronic applications.

8.
Adv Mater ; 36(28): e2313721, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669677

RESUMEN

Germanium-based monochalcogenides (i.e., GeS and GeSe) with desirable properties are promising candidates for the development of next-generation optoelectronic devices. However, they are still stuck with challenges, such as relatively fixed electronic band structure, unconfigurable optoelectronic characteristics, and difficulty in achieving free-standing growth. Herein, it is demonstrated that two-dimensional (2D) free-standing GeS1-xSex (0 ≤ x ≤ 1) nanoplates can be grown by low-pressure rapid physical vapor deposition (LPRPVD), fulfilling a continuously composition-tunable optical bandgap and electronic band structure. By leveraging the synergistic effect of composition-dependent modulation and free-standing growth, GeS1-xSex-based optoelectronic devices exhibit significantly configurable hole mobility from 6.22 × 10-4 to 1.24 cm2V-1s⁻1 and tunable responsivity from 8.6 to 311 A W-1 (635 nm), as x varies from 0 to 1. Furthermore, the polarimetric sensitivity can be tailored from 4.3 (GeS0.29Se0.71) to 1.8 (GeSe) benefiting from alloy engineering. Finally, the tailored imaging capability is also demonstrated to show the application potential of GeS1-xSex alloy nanoplates. This work broadens the functionality of conventional binary materials and motivates the development of tailored polarimetric optoelectronic devices.

9.
ACS Appl Mater Interfaces ; 16(11): 13914-13926, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38447591

RESUMEN

Polarization-sensitive photodetectors have attracted considerable attention owing to their potential application prospects in navigation, optical switching, and communication. However, it remains challenging to develop a facile and effective strategy to simultaneously meet the demands of low power consumption, high performance, and excellent polarization sensitivity. Herein, a series of low-symmetry two-dimensional (2D) ReSe2 Schottky photodetectors with geometry-asymmetric contacts are constructed. These devices exhibit excellent photoelectrical performance and impressive polarization sensitivity in the self-powered mode owing to the difference in the Schottky barrier height induced by the asymmetric contact areas, interfacial states, and thickness difference. Particularly, an outstanding responsivity of 379 mA/W, a decent specific detectivity of 6.8 × 1011 Jones, and a high light on/off ratio (Ilight/Idark) of over 105 under 635 nm light illumination are achieved. Scanning photocurrent mapping (SPCM) measurements further confirm that the ReSe2/drain overlapped region (corresponding to the smaller contact area side) with a higher Schottky barrier height plays a dominant role in the generation of photocurrent. Furthermore, the proposed device displays impressive polarization ratios (PRs) of 3.1 and 3.6 at zero bias under 635 and 808 nm irradiation, respectively. The high-resolution single-pixel imaging capability is also demonstrated. This work reveals the great potential of the ReSe2 Schottky photodetector with geometry-asymmetric contacts for high-performance, self-powered, and polarization-sensitive photodetection.

10.
ACS Appl Mater Interfaces ; 16(10): 12805-12812, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422468

RESUMEN

Polarization-sensitive photodetectors based on two-dimensional anisotropic materials still encounter the issues of narrow spectral coverage and low polarization sensitivity. To address these obstacles, anisotropic As0.6P0.4 with a narrow band gap has been integrated with WSe2 to construct a type-II heterostructure, realizing a high-performance polarization-sensitive photodetector with broad spectral range from 405 to 2200 nm. By operating in photovoltaic mode at zero bias, the device shows a very low dark current of ∼0.02 picoampere, high responsivity of 492 m A/W, and high photoswitching ratio of 6 × 104, yielding a high specific detectivity of 1.4 × 1012 Jones. The strong in-plane anisotropy of As0.6P0.4 endows the device with a capability of polarization-sensitive detection with a high polarization ratio of 6.85 under a bias voltage. As an image sensor and signal receiver, the device shows great potential in imaging and optical communication applications. This work develops an anisotropic vdW heterojunction to realize polarization-sensitive photodetectors with wide spectral coverage, fast response, and high sensitivity, providing a new candidate for potential applications of polarization-resolved electronics and photonics.

11.
Adv Mater ; 36(6): e2309371, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37769436

RESUMEN

Polarimetric photodetector can acquire higher resolution and more surface information of imaging targets in complex environments due to the identification of light polarization. To date, the existing technologies yet sustain the poor polarization sensitivity (<10), far from market application requirement. Here, the photovoltaic detectors with polarization- and gate-tunable optoelectronic reverse phenomenon are developed based on semimetal 1T'-MoTe2 and ambipolar WSe2 . The device exhibits gate-tunable reverse in rectifying and photovoltaic characters due to the directional inversion of energy band, yielding a wide range of current rectification ratio from 10-2 to 103 and a clear object imaging with 100 × 100 pixels. Acting as a polarimetric photodetector, the polarization ratio (PR) value can reach a steady state value of ≈30, which is compelling among the state-of-the-art 2D-based polarized detectors. The sign reversal of polarization-sensitive photocurrent by varying the light polarization angles is also observed, that can enable the PR value with a potential to cover possible numbers (1→+∞/-∞→-1). This work develops a photovoltaic detector with polarization- and gate-tunable optoelectronic reverse phenomenon, making a significant progress in polarimetric imaging and multifunction integration applications.

12.
ACS Appl Mater Interfaces ; 15(24): 29363-29374, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294943

RESUMEN

Self-powered photodetectors have triggered widespread attention because of the requirement of Internet of Things (IoT) application and low power consumption. However, it is challenging to simultaneously implement miniaturization, high quantum efficiency, and multifunctionalization. Here, we report a high-efficiency and polarization-sensitive photodetector enabled by two-dimensional (2D) WSe2/Ta2NiSe5/WSe2 van der Waals (vdW) dual heterojunctions (DHJ) along with a sandwich-like electrode pair. On account of enhanced light collection efficiency and two opposite built-in electric fields at the hetero-interfaces, the DHJ device achieves not only a broadband spectral response of 400-1550 nm but outstanding performance under 635 nm light illumination including an ultrahigh external quantum efficiency (EQE) of 85.5%, a pronounced power conversion efficiency (PCE) of 1.9%, and a fast response speed of 420/640 µs, which is much better than that of the WSe2/Ta2NiSe5 single heterojunction (SHJ). Significantly, based on the strong in-plane anisotropy of 2D Ta2NiSe5 nanosheets, the DHJ device shows competitive polarization sensitivities of 13.9 and 14.8 under 635 and 808 nm light, respectively. Furthermore, an excellent self-powered visible imaging capability based on the DHJ device is demonstrated. These results pave a promising platform for realizing self-powered photodetectors with high performance and multifunctionality.

13.
ACS Appl Mater Interfaces ; 15(25): 30504-30516, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37335909

RESUMEN

In recent years, polarization-sensitive photodiodes based on one-dimensional/two-dimensional (1D/2D) van der Waals (vdWs) heterostructures have garnered significant attention due to the high specific surface area, strong orientation degree of 1D structures, and large photo-active area and mechanical flexibility of 2D structures. Therefore, they are applicable in wearable electronics, electrical-driven lasers, image sensing, optical communication, optical switches, etc. Herein, 1D Bi2O2Se nanowires have been successfully synthesized via chemical vapor deposition. Impressively, the strongest Raman vibration modes can be achieved along the short edge (y-axis) of Bi2O2Se nanowires with high crystalline quality, which originate from Se and Bi vacancies. Moreover, the Bi2O2Se/MoSe2 photodiode designed with type-II band alignment demonstrates a high rectification ratio of 103. Intuitively, the photocurrent peaks are mainly distributed in the overlapped region under the self-powered mode and reverse bias, within the wavelength range of 400-nm. The resulting device exhibits excellent optoelectrical performances, including high responsivities (R) and fast response speed of 656 mA/W and 350/380 µs (zero bias) and 17.17 A/W and 100/110 µs (-1 V) under 635 nm illumination, surpassing the majority of reported mixed-dimensional photodiodes. The most significant feature of our photodiode is its highest photocurrent anisotropic ratio of ∼2.2 (-0.8 V) along the long side (x-axis) of Bi2O2Se nanowires under 635 nm illumination. The above results reveal a robust and distinctive correlation between structural defects and polarized orientation for 1D Bi2O2Se nanowires. Furthermore, 1D Bi2O2Se nanowires appear to be a great potential candidate for high-performance rectifiers, polarization-sensitive photodiodes, and phototransistors based on mixed vdWs heterostructures.

14.
ACS Appl Mater Interfaces ; 15(14): 18101-18113, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36989425

RESUMEN

In recent years, two-dimensional (2D) nonlayered Bi2O2Se-based electronics and optoelectronics have drawn enormous attention owing to their high electron mobility, facile synthetic process, stability to the atmosphere, and moderate narrow band gaps. However, 2D Bi2O2Se-based photodetectors typically present large dark current, relatively slow response speed, and persistent photoconductivity effect, limiting further improvement in fast-response imaging sensors and low-consumption broadband detection. Herein, a Bi2O2Se/2H-MoTe2 van der Waals (vdWs) heterostructure obtained from the chemical vapor deposition (CVD) approach and vertical stacking is reported. The proposed type-II staggered band alignment desirable for suppression of dark current and separation of photoinduced carriers is confirmed by density functional theory (DFT) calculations, accompanied by strong interlayer coupling and efficient built-in potential at the junction. Consequently, a stable visible (405 nm) to near-infrared (1310 nm) response capability, a self-driven prominent responsivity (R) of 1.24 A·W-1, and a high specific detectivity (D*) of 3.73 × 1011 Jones under 405 nm are achieved. In particular, R, D*, fill factor, and photoelectrical conversion efficiency (PCE) can be enhanced to 4.96 A·W-1, 3.84 × 1012 Jones, 0.52, and 7.21% at Vg = -60 V through a large band offset originated from the n+-p junction. It is suggested that the present vdWs heterostructure is a promising candidate for logical integrated circuits, image sensors, and low-power consumption detection.

15.
Nanoscale ; 15(7): 3520-3531, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36723020

RESUMEN

Broadband photodetectors are a category of optoelectronic devices that have important applications in modern communication information. γ-InSe is a newly developed two-dimensional (2D) layered semiconductor with an air-stable and low-symmetry crystal structure that is suitable for polarization-sensitive photodetection. Herein, we report a P-N photodiode based on 3D Ge/2D γ-InSe van der Waals heterojunction (vdWH). A built-in electric field is introduced at the p-Ge/n-InSe interface to suppress the dark current and accelerate the separation of photogenerated carriers. Moreover, the heterojunction belongs to the accumulation mode with a well-designed type-II band arrangement, which is suitable for the fast separation of photogenerated carriers. Driven by these advantages, the device exhibits excellent photovoltaic performance within the detection range of 400 to 1600 nm and shows a double photocurrent peak at around 405 and 1550 nm. In particular, the responsivity (R) is up to 9.78 A W-1 and the specific detectivity (D*) reaches 5.38 × 1011 Jones with a fast response speed of 46/32 µs under a 1550 nm laser. Under blackbody radiation, the room temperature R and D* in the mid-wavelength infrared region are 0.203 A W-1 and 5.6 × 108 Jones, respectively. Moreover, polarization-sensitive light detection from 405-1550 nm was achieved, with the dichroism ratios of 1.44, 3.01, 1.71, 1.41 and 1.34 at 405, 635, 808, 1310 and 1550 nm, respectively. In addition, high-resolution single-pixel imaging capability is demonstrated at visible and near-infrared wavelengths. This work reveals the great potential of the γ-InSe/Ge photodiode for high-performance, broadband, air-stable and polarization-sensitive photodetection.

16.
Nanoscale ; 14(39): 14603-14612, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36156046

RESUMEN

Two-dimensional (2D) polarization-sensitive detection as a new photoelectric application technology is extensively investigated. However, most devices are mainly based on individual anisotropic materials, which suffer from large dark current and relatively low anisotropic ratio, limiting the practical application in polarized imaging system. Herein, we design a van der Waals (vdWs) p-type SnS/n-type InSe vertical heterojunction with proposed type-II band alignment via low-pressure physical vapor deposition (LPPVD) and dry transfer method. The performance compared with the distinctive thickness of anisotropic SnS component was first studied. The fabricated device with a thick (80 nm) SnS nanosheet exhibits a larger rectification ratio exceeding 103. Moreover, the SnS/InSe heterostructure shows a broadband spectral photoresponse from 405 to 1100 nm with a significant photovoltaic effect. Due to efficient photogenerated carrier separation across the wide depletion region at zero bias, the device with thinner (12.4 nm) SnS exhibits trade-off photoresponse performance with a maximum responsivity of 215 mA W-1, an external quantum efficiency of 42.2%, specific detectivity of 1.05 × 1010 Jones, and response time of 8.6/4.2 ms under 635 nm illumination, respectively. In contrast, benefiting from the stronger in-plane anisotropic structure of thinner SnS component, the device delivers a large photocurrent anisotropic ratio of 4.6 under 635 nm illumination in a zigzag manner. Above all, our work provides a new design scheme for multifunctional optoelectronic applications based on thickness-dependent 2D vdWs heterostructures.

17.
Small ; 18(34): e2202523, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35905495

RESUMEN

Polarization-sensitive photodetectors based on van der Waals heterojunctions (vdWH) have excellent polarization-resolved optoelectronic properties that can enable the applications in polarized light identification and imaging. With the development of optical microcomputer control systems (OMCS), it is crucial and energy efficient to adopt the self-powered and polarization-resolved signal-generators to optimize the circuit design of OMCS. In this work, the selenium (Se) flakes with in-plane anisotropy and p-type character are grown and incorporated with n-type tungsten disulfide (WS2 ) to construct the type-II vdWH for polarization-sensitive and self-powered photodetectors. Under 405 nm monochrome laser with 1.33 mW cm-2 power density, the photovoltaic device exhibits superior photodetection performance with the photoelectric conversion efficiency (PCE) of 3.6%, the responsivity (R) of 196 mA W-1 and the external quantum efficiency (EQE) of about 60%. The strong in-plane anisotropy of Se crystal structure gives rise to the capability of polarized light detection with anisotropic photocurrent ratio of ≈2.2 under the 405 nm laser (13.71 mW cm-2 ). Benefiting from the well polarization-sensitive and photovoltaic properties, the p-Se/n-WS2 vdWH is successfully applied in the OMCS as multivalued signal trigger. This work develops the new anisotropic vdWH and demonstrates its feasibility for applications in logic circuits and control systems.

18.
ACS Appl Mater Interfaces ; 14(19): 22607-22614, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35514056

RESUMEN

Polarization-sensitive photodetectors in the infrared range have attracted considerable attention because of their unique and wide application prospects in polarization sensors and remote sensing. However, it is challenging to achieve short-wave infrared polarization detection as most polarization-sensitive photodetectors are based on transition-metal dichalcogenide (TMD) materials with in-plane symmetric crystal structure and sizable band gap (1-2 eV). In this work, we design a type-II GeAs/WS2 heterojunction realizing superior self-driven polarization-sensitive photodetection in the short-wave infrared region. The device shows obvious rectifying behavior with a rectification ratio of 1.5 × 104 in the dark and excellent photoresponse characteristics in a broad spectral range. Accordingly, the high responsivity of 509 mA/W, large on/off ratio of 103, a high EQE of 99.8%, and a high specific detectivity of 1.08 × 1012 Jones are obtained under 635 nm laser irradiation. Taking advantage of the narrow band gap of GeAs with an anisotropic structure, the detection spectral coverage can be extended from the visible to the short-wave infrared range (635-1550 nm). Further, the GeAs/WS2 heterojunction shows high polarization sensitivity with an anisotropic photocurrent ratio of 4.5 and 3.1 at zero bias under 1310 and 1550 nm laser irradiation, respectively, which is much higher than that of reported polarization-sensitive photodetectors in the infrared region. This work provides an effective route using low-symmetry 2D materials with narrow band gap and anisotropic structure to design van der Waals (vdW) heterojunctions, realizing multifunctional optoelectronics for rectifying, photovoltaics, and polarization-sensitive photodetectors with spectral coverage up to 1550 nm.

19.
ACS Appl Mater Interfaces ; 13(51): 61544-61554, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34910468

RESUMEN

Polarization-sensitive photodetection is highly appealing considering its great important applications. However, the inherent in-plane symmetry of a material and the single structure of a detector hinder the further development of polarization detectors with high anisotropic ratios. Herein, we design a p-WSe2/TaIrTe4/n-MoS2 (p-Ta-n) heterojunction. As a type-II Weyl semimetal, TaIrTe4 with an orthorhombic structure has strong in-plane asymmetry, which is confirmed by angle-resolved polarized Raman spectroscopy and second-harmonic generation. Due to the specific structure of the p-Ta-n junction with two vertical built-in electric fields, the device obtains a broadband self-powered photodetection ranging from visible (405 nm) to telecommunication wavelength (1550 nm) regions. Further, an optimized device containing 50-70 nm-thick layered TaIrTe4 has been realized. What is more, high-resolution imaging of "T" based on the device with clear borders illustrates excellent stability of the device. Significantly, the photocurrent anisotropic ratio of the p-Ta-n detector can reach 9.1 under 635 nm light, which is more than eight times that of the best known TaIrTe4-based photodetector reported before. This p-Ta-n junction containing a type-II Weyl fermion semimetal can provide an effective approach toward highly polarization-sensitive and high-performance integrated broadband photodetectors.

20.
ACS Omega ; 6(50): 34763-34770, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34963959

RESUMEN

Two-dimensional (2D) bismuth oxyselenide (Bi2O2Se) has attracted increasing attention due to its high mobility, tunable band gap, and air stability. The surface reconstruction of cleaved Bi2O2Se due to the electrostatic interlayer interactions can lead to the in-plane anisotropic structure and physics. In this work, we first discovered the strong anisotropy in phonon modes through the angle-resolved polarized Raman (ARPR) spectra. Benefiting from the anisotropic feature, a high-performance polarization-sensitive photodetector has been achieved by constructing a heterostructure composed of the multilayer Bi2O2Se as polarized-light sensitizers and 2D WSe2 as a photocarrier transport channel. The detectors exhibit broadband response spectra from 405 to 1064 nm along with high responsivity, fast speed, and high sensitivity owing to the photogating effect in this device architecture. More importantly, the photocurrent shows strong light polarization dependence with the maximum dichroism ratio of 4.9, and a reversal is observed for the angle-dependent photocurrent excited by polarized 405 and 635 nm light. This work provides new insight in terms of optical and photocurrent anisotropy of exfoliated Bi2O2Se and expands its applications in angle-resolved electronics and optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA