Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 42(12): 1891-1906, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743376

RESUMEN

KEY MESSAGE: The study of the origin, evolution, and diversification of the wall-associated kinase gene family in plants facilitates their functional investigations in the future. Wall-associated kinases (WAKs) make up one subfamily of receptor-like kinases (RLKs), and function directly in plant cell elongation and responses to biotic and abiotic stresses. The biological functions of WAKs have been extensively characterized in angiosperms; however, the origin and evolutionary history of the WAK family in green plants remain unclear. Here, we performed a comprehensive analysis of the WAK family to reveal its origin, evolution, and diversification in green plants. In total, 1061 WAK genes were identified in 37 species from unicellular algae to multicellular plants, and the results showed that WAK genes probably originated before bryophyte differentiation and were widely distributed in land plants, especially angiosperms. The phylogeny indicated that the land plant WAKs gave rise to five clades and underwent lineage-specific expansion after species differentiation. Cis-acting elements and expression patterns analyses of WAK genes in Arabidopsis and rice demonstrated the functional diversity of WAK genes in these two species. Many gene gains and losses have occurred in angiosperms, leading to an increase in the number of gene copies. The evolutionary trajectory of the WAK family during polyploidization was uncovered using Gossypium species. Our results provide insights into the evolution of WAK genes in green plants, facilitating their functional investigations in the future.


Asunto(s)
Arabidopsis , Plantas , Plantas/genética , Genes de Plantas/genética , Arabidopsis/genética , Familia de Multigenes
2.
Heliyon ; 9(8): e18731, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576216

RESUMEN

Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance. Here, an improved and comprehensive meta-QTL analysis was conducted on 487 disease resistant QTLs from 31 studies in the last two decades. A consensus linkage map with genetic overall length of 3006.59 cM containing 8650 markers was constructed. A total of 28 Meta-QTLs (MQTLs) were discovered, among which nine MQTLs were identified as related to resistance to multiple diseases. Candidate genes were predicted based on public transcriptome data and enriched in pathways related to disease resistance. This study used a method based on the integration of Meta-QTL, known genes and transcriptomics to reveal major genomic regions and putative candidate genes for resistance to multiple diseases, providing a new basis for marker-assisted selection of high disease resistance in cotton breeding.

3.
Plants (Basel) ; 11(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35448769

RESUMEN

Histone demethylases containing JumonjiC (JmjC) domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 JmjC family genes were identified from 21 different plant species. The evolutionary analysis results showed that the JmjC gene was detected in each species, that is, the gene has already appeared in algae. The phylogenetic analysis showed that the KDM3/JHDM2 subfamily genes may have appeared when plants transitioned from water to land, but were lost in lycophytes (Selaginella moellendorffii). During the evolutionary process, some subfamily genes may have been lost in individual species. According to the analysis of the conserved domains, all of the plant JmjC genes contained a typical JmjC domain, which was highly conserved during plant evolution. The analysis of cis-acting elements showed that the promoter region of the JmjC gene was rich in phytohormones and biotic and abiotic stress-related elements. The transcriptome data analysis and protein interaction analyses showed that JmjC genes play an important role in plant growth and development. The results clarified the evolutionary history of JmjC family genes in plants and lay the foundation for the analysis of the biological functions of JmjC family genes.

4.
Int J Biol Macromol ; 187: 867-879, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34339786

RESUMEN

The wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) form a group of receptor-like kinases (RLKs) with extracellular domains tightly linked to the cell wall. The WAKs/WAKLs have been known to be involved in plant growth, development, and stress responses. However, the functions of WAKs/WAKLs are less well known in cotton. In this study, 58, 66, and 99 WAK/WAKL genes were identified in Gossypium arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic analysis showed they were classified into five groups, with two groups specific to cotton. Collinearity analysis revealed that segmental and tandem duplications resulted in expansion of the WAK/WAKL gene family in cotton. Moreover, the Ka/Ks ratios indicated this family was exposed to purifying selection pressure during evolution. The structures of the GhWAK/WAKL genes and encoded proteins suggested the functions of WAKs/WAKLs in cotton were conserved. Transient expression of four WAK/WAKL-GFP fusion constructs in Arabidopsis protoplasts indicated that they were localized on the plasma membrane. The cis-elements in the GhWAK/WAKL promoters were responsive to multiple phytohormones and abiotic stresses. Expression profiling showed that GhWAK/WAKL genes were induced by various abiotic stresses. This study provides insights into the evolution of WAK/WAKL genes and presents fundamental information for further analysis in cotton.


Asunto(s)
Membrana Celular/enzimología , Pared Celular/enzimología , Gossypium/enzimología , Proteínas Quinasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Membrana Celular/genética , Pared Celular/genética , Bases de Datos Genéticas , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Filogenia , Proteínas Quinasas/genética , Estrés Fisiológico , Transcriptoma
5.
Opt Lett ; 45(8): 2470-2473, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287261

RESUMEN

We present a miniaturized precalibration-based forward-viewing Lissajous scanning fiber probe for high speed endoscopic optical coherence tomography (OCT). The probe is based on an asymmetric fiber cantilever driven by the piezoelectric bender to realize two-dimensional (2D) Lissajous scanning. The stability and repeatability of the Lissajous scanning trajectory of the probe is tested by a position sensitive detector (PSD)-based position calibration setup. The two orthogonal resonant frequencies of the cantilever are measured to be 167.2 and 121 Hz. A 25 µm focal spot is formed at the working distance of 5 mm by the graded-index (GRIN) lens, and the field of view of the imaging probe is around ${1.5}\;{\rm mm} \times {1.5}\;{\rm mm}$1.5mm×1.5mm. The probe is fully packaged in a hypodermic tube for endoscopic imaging. The total rigid length and outer diameter are 35 mm and 3.5 mm, respectively. The probe is incorporated in a 50 KHz swept source OCT system with the axial resolution of 14 µm, and its imaging performance is validated by the 2D en face and 3D volumetric OCT imaging of the phantom and the biological tissue.


Asunto(s)
Endoscopía/instrumentación , Miniaturización/instrumentación , Fibras Ópticas , Tomografía de Coherencia Óptica/instrumentación , Calibración , Imagenología Tridimensional , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...