Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405459, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711309

RESUMEN

The hydrogen evolution and nitrite reduction reactions are key to producing green hydrogen and ammonia. Antenna-reactor nanoparticles hold promise to improve the performances of these transformations under visible-light excitation, by combining plasmonic and catalytic materials. However, current materials involve compromising either on the catalytic activity or the plasmonic enhancement and also lack control of reaction selectivity. Here, we demonstrate that ultralow loadings and non-uniform surface segregation of the catalytic component optimize catalytic activity and selectivity under visible-light irradiation. Taking Pt-Au as an example we find that fine-tuning the Pt content produces a 6-fold increase in the hydrogen evolution compared to commercial Pt/C as well as a 6.5-fold increase in the nitrite reduction and a 2.5-fold increase in the selectivity for producing ammonia under visible light excitation relative to dark conditions. Density functional theory suggests that the catalytic reactions are accelerated by the intimate contact between nanoscale Pt-rich and Au-rich regions at the surface, which facilitates the formation of electron-rich hot-carrier puddles associated with the Pt-based active sites. The results provide exciting opportunities to design new materials with improved photocatalytic performance for sustainable energy applications.

2.
ACS Appl Mater Interfaces ; 16(9): 11467-11478, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38382920

RESUMEN

Plasmonic photocatalysis has been limited by the high cost and scalability of plasmonic materials, such as Ag and Au. By focusing on earth-abundant photocatalyst/plasmonic materials (HxMoO3) and Pd as a catalyst, we addressed these challenges by developing a solventless mechanochemical synthesis of Pd/HxMoO3 and optimizing photocatalytic activities in the visible range. We investigated the effect of HxMoO3 band gap excitation (at 427 nm), Pd interband transitions (at 427 nm), and HxMoO3 localized surface plasmon resonance (LSPR) excitation (at 640 nm) over photocatalytic activities toward the hydrogen evolution and phenylacetylene hydrogenation as model reactions. Although both excitation wavelengths led to comparable photoenhancements, a 110% increase was achieved under dual excitation conditions (427 + 640 nm). This was assigned to a synergistic effect of optical excitations that optimized the generation of energetic electrons at the catalytic sites. These results are important for the development of visible-light photocatalysts based on earth-abundant components.

3.
Adv Mater ; 35(45): e2304494, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37473821

RESUMEN

Prussian blue analogs (PBAs) are promising catalysts for green hydrogen production. However, the rational design of high-performing PBAs is challenging, which requires an in-depth understanding of the catalytic mechanism. Here FeMn@CoNi core-shell PBAs are employed as precursors, together with Se powders, in low-temperature pyrolysis in an argon atmosphere. This synthesis method enables the partial dissociation of inner FeMn PBAs that results in hollow interiors, Ni nanoparticles (NPs) exsolution to the surface, and Se incorporation onto the PBA shell. The resulting material presents ultralow oxygen evolution reaction (OER) overpotential (184 mV at 10 mA cm-2 ) and low Tafel slope (43.4 mV dec-1 ), outperforming leading-edge PBA-based electrocatalysts. The mechanism responsible for such a high OER activity is revealed, assisted by density functional theory (DFT) calculations and the surface examination before and after the OER process. The exsolved Ni NPs are found to help turn the PBAs into Se-doped core-shell metal oxyhydroxides during the OER, in which the heterojunction with Ni and the Se incorporation are combined to improve the OER kinetics. This work shows that efficient OER catalysts could be developed by using a novel synthesis method backed up by a sound understanding and control of the catalytic pathway.

4.
Small ; 18(40): e2203713, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36056900

RESUMEN

Prussian blue analogs (PBAs) are considered as efficient catalysts for energy-related applications due to their porous nanoscale architectures containing finely disseminated active sites. Their catalytic capability can be greatly boosted by the rational design and construction of complex PBA hybrid nanostructures. However, present-day structure engineering inevitably involves additional etchant or procedure. Herein, a facile, yet controllable one-pot self-assembly strategy is introduced to prepare hierarchical core-shell polymetallic PBAs (featuring bimetallic FeMn PBAs cores and CoNi PBAs shells) with hollow nano-cages/solid nano-cube architectures. The detailed characterization of material morphology/composition, assisted with theoretical simulations, reveals the underlying formation mechanism where the key factor is the control of the nucleation rate via the use of chelating agent (citrates) and reaction kinetics. The resulting FeMn@CoNi-H compound is found to accelerate the oxygen evolution reaction activity with a low overpotential (236 mV at a current density 10 mA cm-2 ) as well as a low Tafel slope (58.4 mV dec-1 ). Such an impressive performance is endowed by the rational compositional and structural design with optimized electronic structures as well as an increase in exposed active sites. This work provides a robust, cost-effective pathway that enables chemical and morphological control in creating high-performance catalysts for water electrolysis.

5.
Nanoscale ; 14(23): 8463-8473, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35662311

RESUMEN

Auxetic materials are highly desirable for advanced applications because of their negative Poisson's ratios, which are rather scarce in two-dimensional materials. Motivated by the elemental mutation method, we predict a new class of monolayer IV-VI semiconductors, namely, δ-IV-VI monolayers (GeS, GeSe, SiS and SiSe). Distinctly different from the previously predicted IV-VI monolayers, the newly predicted δ-MX (X = Ge and Si; M = S and Se) monolayers exhibit a puckered unit cell with a space group of Pca21. Their stabilities were confirmed by first-principles lattice dynamics and molecular dynamics calculations. In particular, all these MX monolayers possess a large bandgap in the range of 2.08-2.65 eV and pronounced anisotropic mechanical properties, which are demonstrated by direction-dependent in-plane Young's moduli and Poisson's ratios. Furthermore, all these 2D MX monolayers possess negative Poisson's ratios (even up to about -0.3 for SiSe). Strong optical absorption is observed in these δ-IV-VI monolayers. These interesting physical properties will stimulate the development of 2D flexible devices based on IV-VI semiconductor monolayers.

6.
Nanotechnology ; 33(34)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35561655

RESUMEN

Recently, a new two-dimensional allotrope of carbon named biphenylene has been experimentally synthesized. First-principles calculations are preformed to investigate the electronic properties of biphenylene and the doping effect is also considered to tune its electronic, magnetic, and catalytic properties. The metallic nature with an n-type Dirac cone is observed in the biphenylene. The magnetism can be induced by Fe, Cl, Cr, and Mn doping. More importantly, the doping position dependence of hydrogen evolution reaction (HER) performance of biphenylene is addressed, which can be significantly improved by atomic doping. In particular, the barrier for HER of Fe doping case is only -0.03 eV, denoting its great potential in HER catalysis.

7.
Phys Chem Chem Phys ; 23(43): 24915-24921, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34726209

RESUMEN

Two-dimensional (2D) materials with a moderate bandgap and high carrier mobility are useful for applications in optoelectronics. In this work, we present a systematic investigation of the mechanical, electronic and optical properties of a B2P6 monolayer using first-principles calculations. Monolayer B2P6 was estimated to be an anisotropic material from direction-dependent in-plane Young's moduli and Poisson's ratios. Also, B2P6 exhibits an ultrahigh electron mobility of ∼5888 cm2 V-1 s-1, showing advantages for application in high-speed optoelectronic devices. More importantly, for the B2P6 monolayer, a desirable transformation from an indirect to direct band gap was observed at a biaxial tensile strain of ∼4%. Increasing the biaxial strain reduces the gap and preserves the suitable band edge positions for photocatalytic water splitting in the observed strain range of 1-8%. The decreased gap also enhances the visible light absorption of the B2P6 monolayer. These findings indicate that the B2P6 monolayer has promising applications in photocatalytic and photovoltaic devices.

8.
Nanomaterials (Basel) ; 11(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34578552

RESUMEN

After the discovery of graphene, a lot of research has been conducted on two-dimensional (2D) materials. In order to increase the performance of 2D materials and expand their applications, two different layered materials are usually combined by van der Waals (vdW) interactions to form a heterostructure. In this work, based on first-principles calculation, some charming properties of the heterostructure constructed by Hf2CO2, AlN and GaN are addressed. The results show that Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures can keep their original band structure shape and have strong thermal stability at 300 K. In addition, the Hf2CO2/MN heterostructure has I-type band alignment structure, which can be used as a promising light-emitting device material. The charge transfer between the Hf2CO2 and AlN (or GaN) monolayers is 0.1513 (or 0.0414) |e|. The potential of Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures decreases by 6.445 eV and 3.752 eV, respectively, across the interface. Furthermore, both Hf2CO2/AlN and Hf2CO2/GaN heterostructures have remarkable optical absorption capacity, which further shows the application prospect of the Hf2CO2/MN heterostructure. The study of this work provides theoretical guidance for the design of heterostructures for use as photocatalytic and photovoltaic devices.

9.
RSC Adv ; 11(47): 29576-29584, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35479544

RESUMEN

Two-dimensional (2D) materials have attracted numerous investigations after the discovery of graphene. 2D van der Waals (vdW) heterostructures are a new generation of layered materials, which can provide more desirable applications. In this study, the first principles calculation was implemented to study the heterostructures based on Janus TMDs (MoSSe and WSSe) and Mg(OH)2 monolayers, which were constructed by vdW interactions. Both MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures have thermal and dynamic stability. Besides, XSSe/Mg(OH)2 (X = Mo, W) possesses a direct bandgap with a type-I band alignment, which provides promising applications for light-emitting devices. The charge density difference was investigated, and 0.003 (or 0.0042) |e| were transferred from MoSSe (or WSSe) layer to Mg(OH)2 layer, and the potential drops were calculated to be 11.59 and 11.44 eV across the interface of the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures, respectively. Furthermore, the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures have excellent optical absorption wave. Our studies exhibit an effective method to construct new heterostructures based on Janus TMDs and develop their applications for future light emitting devices.

10.
J Hazard Mater ; 399: 123016, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535517

RESUMEN

Ag-TiO2 nanotube array films with the preferential orientation of crystals were fabricated on ITO glass by magnetron sputtering and anodization. Comprehensive characterization was performed to ascertain the composition and microstructure characteristics of thin films. The photocatalytic activities were evaluated through the reduction of hexavalent chromium (Cr2O72- (Cr (VI)) as a model compound under visible light irradiation. XRD and XPS studies reveal the development of preferred orientation along [001] in anatase TiO2 nanotubes by adjusting the Ag content during magnetron sputtering. Such unusual behavior is attributed to the minimization of anatase (001) surface energy assisted by Ag. The Ag-TiO2 nanotube arrays having preferred crystal orientation exhibit superior separation/transfer of photo-induced charges. Furthermore, the Ag-TiO2 nanotube arrays show improved absorption of visible light due to the SPR effect induced by Ag and the formation of heterojunction between the TNAs and Ag2O. TNA-3Ag exhibits the highest photocatalytic activities by removing 99.1 % Cr (VI) in 90 min under visible light illumination.

11.
Sci Rep ; 9(1): 5050, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911070

RESUMEN

This study explores the radiation field temperatures introduced by the laser spot, the re-emitting wall in a hohlraum and the entire hohlraum drive source. This investigation, which is the first of its kind, is based on the radiation fluxes from the laser spot and the re-emitting wall, which have been accurately measured using time- and space-resolving flux detectors in a recent work, and additional flux data. The temperature difference between the laser spot and the entire hohlraum drive source was 6.08-35.35% of the temperature of the latter throughout the entire laser pulse, whilst that for the re-emitting wall was 3.90-12.81%. The radiation temperature of the cooler re-emitting wall had more influence on the temperature increase of the entire hohlraum drive source than the hot laser-spot temperature, which has been quantitatively discussed. Experimentally, we established the average distributions of the temperature fields of all the emitting sources, namely laser spot and re-emitting wall, of the irradiating fluxes on the capsule region in the hohlraum radiation field. This important progress in the exploration of radiation temperature distributions within a hohlraum will provide a foundation for determination of the irradiating radiation on the capsule and evaluation of capsule symmetry.

12.
Rev Sci Instrum ; 89(6): 063502, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960517

RESUMEN

Space-resolving flux detection is an important technique for the diagnostic of the radiation field within the hohlraum in inertial confinement fusion, especially for the radiation field diagnostic in the novel spherical hohlraum with octahedral six laser entrance holes (LEHs), where localized measurements are necessary for the discrimination of the radiation flux from different LEHs. A novel space-resolving flux detector (SRFD) is developed at the SG-III laser facility for the radiation flux measurement in the first campaign of the octahedral spherical hohlraum energetics experiment. The principle and configuration of the SRFD system is introduced. The radiation flux from the wall of a gas-filled octahedral spherical hohlraum is measured for the first time by placing the SRFD system at the equatorial position of the SG-III laser facility, aiming at the hohlraum wall through one of the six LEHs. The absolute radiation flux from the re-emission area on the hohlraum wall is measured, and good consistency is found between the experimental data and the calculated data from a three-dimensional view factor analysis.

13.
Sci Total Environ ; 642: 505-515, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29908509

RESUMEN

Cr6+ and Pb2+ are both highly toxic pollutants and commonly co-exist in some industrial effluents and contaminated waters. In this study, simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero-valent iron (SSB-nZVI) was systematically investigated. It was well demonstrated that a porous structure was successfully formed on the SSB-nZVI when the starch was used as an additive. A synergistic effect on the adsorption and reduction over the SSB-nZVI was achieved, resulting in nearly 90 and 82% of Cr6+ and Pb2+ removal within 30 min, respectively. Cr6+ was reduced prior to Pb2+. A low pH could accelerate the corrosion of nZVI as well as phosphate leaching. When Malachite green was added as a coexisting organic pollutant, its effective removal was found due to the formation of a Fenton-like system. The SSB-nZVI could be run consecutively three times with a relatively satisfactory performance. Most of Cr6+ was converted into Cr2O3 and Cr(OH)3 on the SSB-nZVI surface, whereas most of Pb2+ species existed as Pb(OH)2 (or PbO). A possible reaction mechanism on the SSB-nZVI involved the adsorption, reduction and precipitation of both Cr6+ and Pb2+ over the particles. Present study sheds light on the insight of the fate and transport of Cr6+ and Pb2+ in aquatic environment, as well provides helpful guide for the remediation of coexistence of pollutants in real applications.


Asunto(s)
Cromo/análisis , Hierro/análisis , Plomo/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Carbón Orgánico , Cromo/química , Hierro/química , Plomo/química , Aguas del Alcantarillado , Contaminantes Químicos del Agua/química
14.
Environ Pollut ; 239: 698-705, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29715689

RESUMEN

In this study, a novel biochar-supported zero valent iron (BC-nZVI) was synthesized through a green method. A high performance on the simultaneous removal of Cu2+ and bisphenol A (BPA) by a combination of BC-nZVI with persulfate (BC-nZVI/PS) system was successfully achieved. The simultaneous efficiencies of Cu2+ and BPA could reach 96 and 98% within 60 min, respectively. Both HO• and SO4•- were two major reactive species in BC-nZVI/PS system, and SO4•- was primary radical responsible for the degradation of BPA. Four kinds of Cu species, such as Cu(OH)2, CuO, Cu2O and Cu0 were generated via the adsorption and reduction of the BC-nZVI, whereas six kinds of products of BPA including p-isopropenyl phenol and 4-isopropylphenol were generated via the combined oxidation of SO4•- and HO•. The possible reaction mechanism for the simultaneous removal of Cu2+ and BPA by BC-nZVI/PS system contained a synergistic effect between the reduction of Cu2+ and the oxidation of BPA. This is the first report on the feasibility of the remediation of coexistence of heavy metal and organic compound in aquatic environment using the BC-nZVI/PS system.


Asunto(s)
Compuestos de Bencidrilo/análisis , Carbón Orgánico/química , Cobre/análisis , Hierro/química , Fenoles/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Compuestos de Bencidrilo/química , Cationes Bivalentes , Cobre/química , Oxidación-Reducción , Fenoles/química , Contaminantes Químicos del Agua/química
15.
Opt Express ; 23(19): A1072-80, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406737

RESUMEN

A space-resolving flux detector (SRFD) is developed to measure the X-ray flux emitted from a specified region in hohlraum with a high resolution up to 0.11mm for the first time. This novel detector has been used successfully to measure the distinct X-ray fluxes emitted from hot laser spot and cooler re-emitting region simultaneously, in the hohlraum experiments on SGIII prototype laser facility. According to our experiments, the ratio of laser spot flux to re-emitted flux shows a strong time-dependent behavior, and the area-weighted flux post-processed from the measured laser spot flux and re-emitting wall flux agrees with that measured from Laser Entrance Hole by using flat-response X-ray detector (F-XRD). The experimental observations is reestablished by our two-dimensional hydrodynamic simulations and is well understood with the power balance relationship.

16.
Ying Yong Sheng Tai Xue Bao ; 14(7): 1055-9, 2003 Jul.
Artículo en Chino | MEDLINE | ID: mdl-14587321

RESUMEN

The distributions of chlorophyll a and primary productivity were determined during April to May 2002 in the East China Sea. The results showed that the average concentration of chlorophyll a was 1.086 mg.m-3 at surface layer, and that nano- and pico-phytoplankton (< 20 microns) dominated the phytoplankton biomass in this sea region during Spring (up to 64% of total chlorophyll a content). Ultra-phytoplankton (< 5 microns) consisted 27% of total phytoplankton biomass. Nutrients and feeding pressure of zooplankton affected the distribution of chlorophyll a and its size-fractionation. The average primary productivity was 10.091 mg.m-3.h-1, while that of red tide tracking stations R-03, RL-01 and RG-01 was 399.984 mg.m-3.h-1. Light and nutrients were the main factors affecting the distributions of chlorophyll a and primary productivity. The station DC-11 had a high concentration of phytoplankton biomass. The surface layer concentration of chlorophyll a and primary productivity were up to 9,082 mg.m-3 and 128,79 mg.m-3.h-1, respectively, but the color of the seawater was normal.


Asunto(s)
Clorofila/análisis , Ecosistema , Floraciones de Algas Nocivas , Fitoplancton , Agua de Mar , Animales , Biomasa , China , Clorofila A , Océanos y Mares , Estaciones del Año , Agua de Mar/química , Zooplancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...