Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(51): 57092-57101, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516406

RESUMEN

Achieving ultraviolet and narrowband emission simultaneously in nondoped organic light-emitting diodes (OLEDs) remains a tremendous challenge. Here, a "space-crowded donor-acceptor-donor" molecular design strategy is proposed for developing ultraviolet pure organic fluorophores by the nearby substituted positions at the phenyl linker between carbazole and pyridine units. Benefitting from the large steric hindrance effect, multiple intramolecular interactions, and low-frequency vibronic coupling dominated excited state property, all the emitters exhibit excellent fluorescence efficiencies at the solid state as well as the narrow full width at half maximums (FWHMs). Moreover, the effect of different substitution positions of pyridine on the structure-property relationship is also revealed. Consequently, the nondoped OLEDs exhibit an electroluminescence emission peak of 397 nm with FWHMs of 17 and 22 nm. Due to the high-lying reverse intersystem crossing process, external quantum and exciton utilization efficiencies of 3.6 and 54.55%, respectively, have been achieved based on the emitter with para-linkage. These findings may pave an avenue for the development of high-performance narrowband ultraviolet materials and OLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...