Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 347: 123764, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490528

RESUMEN

Numerous contaminants are produced and used daily, a significant fraction ultimately finding their way into natural waters. However, data on their distribution in lakes is lacking. To address this gap, the presence of 54 trace organic contaminants (TrOCs), representative of various human activities, was investigated in the surface water of 290 lakes across Canada. These lakes ranged from remote to highly impacted by human activities. In 88% of the sampled lakes, contaminants were detected, with up to 28 detections in a single lake. The compounds most frequently encountered were atrazine, cotinine, and deethylatrazine, each of which was present in more than a third of the lakes. The range of detected concentrations was from 0.23 ng/L to about 2200 ng/L for individual compounds, while the maximum cumulative concentration exceeded 8100 ng/L in a single lake. A risk assessment based on effect concentrations for three aquatic species (Pimephales promelas, Daphnia magna, and Tetrahymena pyriformis) was conducted, revealing that 6% of lakes exhibited a high potential risk for at least one species. In 59% of lakes, some contaminants with potential sub-lethal effects were detected, with the detection of up to 17 TrOCs with potential impacts. The results of this work provide the first reference point for monitoring the evolution of contamination in Canadian lakes by TrOCs. They demonstrate that a high proportion of the sampled lakes bear an environmentally relevant anthropogenic chemical footprint.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Humanos , Canadá , Monitoreo del Ambiente , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
3.
Nat Microbiol ; 8(10): 1920-1934, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37524802

RESUMEN

Lakes are heterogeneous ecosystems inhabited by a rich microbiome whose genomic diversity is poorly defined. We present a continental-scale study of metagenomes representing 6.5 million km2 of the most lake-rich landscape on Earth. Analysis of 308 Canadian lakes resulted in a metagenome-assembled genome (MAG) catalogue of 1,008 mostly novel bacterial genomospecies. Lake trophic state was a leading driver of taxonomic and functional diversity among MAG assemblages, reflecting the responses of communities profiled by 16S rRNA amplicons and gene-centric metagenomics. Coupling the MAG catalogue with watershed geomatics revealed terrestrial influences of soils and land use on assemblages. Agriculture and human population density were drivers of turnover, indicating detectable anthropogenic imprints on lake bacteria at the continental scale. The sensitivity of bacterial assemblages to human impact reinforces lakes as sentinels of environmental change. Overall, the LakePulse MAG catalogue greatly expands the freshwater genomic landscape, advancing an integrative view of diversity across Earth's microbiomes.


Asunto(s)
Lagos , Microbiota , Humanos , Lagos/microbiología , ARN Ribosómico 16S/genética , Canadá , Bacterias/genética , Microbiota/genética
4.
J Phycol ; 59(5): 1005-1024, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37497766

RESUMEN

The scientific community lacks models for the dynamic changes in population size structure that occur in colonial phytoplankton. This is surprising, as size is a key trait affecting many aspects of phytoplankton ecology, and colonial forms are very common. We aim to fill this gap with a new discrete, stochastic model of dynamic changes in phytoplankton colonies' population size structure. We use the colonial phytoplankton Dinobryon as a proof-of-concept organism. The model includes four stochastic functions-division, stomatocyst production, colony breakage, and colony loss-to determine Dinobryon population size structure and populations counts. Although the functions presented here are tailored to Dinobryon, the model is readily adaptable to represent other colonial taxa. We demonstrate how fitting our model to in situ observations of colony population size structure can provide a powerful approach to explore colony size dynamics. Here, we have (1) collected high-frequency in situ observations of Dinobryon in Lac (Lake) Montjoie (Quebec, Canada) in 2013 with a moored Imaging FlowCytobot (IFCB) and (2) fit the model to those observations with a genetic algorithm solver that extracts parameter estimates for each of the four stochastic functions. As an example of the power of this model-data integration, we also highlight ecological insights into Dinobryon colony size and stomatocyst production. The Dinobryon population was enriched in larger, flagellate-rich colonies near bloom initiation and shifted to smaller and emptier colonies toward bloom decline.


Asunto(s)
Chrysophyta , Fitoplancton , Fitoplancton/genética , Densidad de Población , Citometría de Flujo , Lagos
5.
Water Res ; 231: 119596, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653256

RESUMEN

Lakes are sentinels of environmental changes within their watersheds including those induced by a changing climate and anthropogenic activities. In particular, contamination originating from point or non-point sources (NPS) within watersheds might be reflected in changes in the bacterial composition of lake water. We assessed the abundance of potentially pathogenic bacteria (PPB) sampled in 413 lakes within 8 southern Canadian ecozones that represent a wide diversity of lakes and watershed land use. The study objectives were (1) to explore the diversity of PPB; (2) to build a fecal multi-indicator from a cluster of co-occurring PPB; and (3) to predict the fecal multi-indicator over thousands of lakes. We identified bacterial taxa based on 16S rRNA amplicon sequencing and clustered 33 PPB matching taxa in the Canadian ePATHogen database using a Sørensen dissimilarity index on binary data across the sampled lakes. One cluster contained Erysipelothrix, Desulfovibrio, Bacteroides, Vibrio and Acholeplasma and was related to the NPS fraction of agriculture and pasture within the watershed as its main driver and thus it was determined as the fecal multi-indicator. We subsequently developed a fecal multi-indicator predictive model across 200 212 southern Canadian lakes which explained 55.1% of the deviance. Mapping the predictions showed higher fecal multi-indicator abundances in the Prairies and Boreal Plains compared to the other ecozones. These results represent the first attempt to map a potential fecal multi-indicator at the continental scale, which may be further improved in the future. Lastly, the study demonstrates the capacity of a multi-disciplinary approach leveraging both datasets derived from remote sensing and DNA sequencing to provide mapping information for public health governmental policies.


Asunto(s)
Pradera , Lagos , Lagos/microbiología , ARN Ribosómico 16S/genética , Monitoreo del Ambiente/métodos , Canadá , Bacterias/genética , Heces/microbiología , Agricultura
6.
Front Microbiol ; 13: 995418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338036

RESUMEN

Our decreasing ability to fight bacterial infections is a major health concern. It is arising due to the evolution of antimicrobial resistance (AMR) in response to the mis- and overuse of antibiotics in both human and veterinary medicine. Lakes integrate watershed processes and thus may act as receptors and reservoirs of antibiotic resistance genes (ARGs) introduced into the watershed by human activities. The resistome - the diversity of ARGs - under varying anthropogenic watershed pressures has been previously studied either focused on few select genes or few lakes. Here, we link the resistome of ~350 lakes sampled across Canada to human watershed activity, trophic status, as well as point sources of ARG pollution including wastewater treatment plants and hospitals in the watershed. A high percentage of the resistance genes detected was either unimpacted by human activity or highly prevalent in pristine lakes, highlighting the role of AMR in microbial ecology in aquatic systems, as well as a pool of genes available for potential horizontal gene transfer to pathogenic species. Nonetheless, watershed agricultural and pasture area significantly impacted the resistome. Moreover, the number of hospitals and the population density in a watershed, the volume of wastewater entering the lake, as well as the fraction of manure applied in the watershed as fertilizer significantly impacted ARG diversity. Together, these findings indicate that lake resistomes are regularly stocked with resistance genes evolved in the context of both veterinary and human antibiotics use and represent reservoirs of ARGs that require further monitoring.

7.
mSystems ; 7(4): e0031622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35730947

RESUMEN

Protists play key roles in aquatic food webs as primary producers, predators, nutrient recyclers, and symbionts. However, a comprehensive view of protist diversity in freshwaters has been challenged by the immense environmental heterogeneity among lakes worldwide. We assessed protist diversity in the surface waters of 366 freshwater lakes across a north temperate to subarctic range covering nearly 8.4 million km2 of Canada. Sampled lakes represented broad gradients in size, trophic state, and watershed land use. Hypereutrophic lakes contained the least diverse and most distinct protist communities relative to nutrient-poor lakes. Greater taxonomic variation among eutrophic lakes was mainly a product of heterotroph and mixotroph diversity, whereas phototroph assemblages were more similar under high-nutrient conditions. Overall, local physicochemical factors, particularly ion and nutrient concentrations, elicited the strongest responses in community structure, far outweighing the effects of geographic gradients. Despite their contrasting distribution patterns, obligate phototroph and heterotroph turnover was predicted by an overlapping set of environmental factors, while the metabolic plasticity of mixotrophs may have made them less predictable. Notably, protist diversity was associated with variation in watershed soil pH and agricultural crop coverage, pointing to human impact on the land-water interface that has not been previously identified in studies on smaller scales. Our study exposes the importance of both within-lake and external watershed characteristics in explaining protist diversity and biogeography, critical information for further developing an understanding of how freshwater lakes and their watersheds are impacted by anthropogenic stressors. IMPORTANCE Freshwater lakes are experiencing rapid changes under accelerated anthropogenic stress and a warming climate. Microorganisms underpin aquatic food webs, yet little is known about how freshwater microbial communities are responding to human impact. Here, we assessed the diversity of protists and their myriad ecological roles in lakes varying in size across watersheds experiencing a range of land use pressures by leveraging data from a continental-scale survey of Canadian lakes. We found evidence of human impact on protist assemblages through an association with lake trophic state and extending to agricultural activity and soil characteristics in the surrounding watershed. Furthermore, trophic state appeared to explain the distributions of phototrophic and heterotrophic protists in contrasting ways. Our findings highlight the vulnerability of lake ecosystems to increased land use and the importance of assessing terrestrial interfaces to elucidate freshwater ecosystem dynamics.


Asunto(s)
Ecosistema , Lagos , Humanos , Lagos/química , Canadá , Eucariontes/metabolismo , Suelo
8.
Water Res ; 209: 117935, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34915335

RESUMEN

Eukaryotic pathogens including fungi and enteroparasites infect humans, animals and plants. As integrators of landscape catchment, lakes can reflect and record biological and geochemical events or anthropogenic changes and provide useful knowledge to formulate public health, food security and water policies to manage and prevent diseases. In this context, potentially pathogenic fungi and parasites were sampled using 18S rRNA gene amplicon sequencing in 382 lakes displaying a broad range of sizes and human impact on the watershed in 10 ecozones across Canada. Based on pathogen classifications from the ePATHogen database published by the Public Health Agency of Canada, we identified 23 health-relevant genera for human and animal hosts, including Cryptococcus and Cryptosporidium. Our study investigated the potential of remote sensing and geomatics to predict microbial contamination in a tele-epidemiological approach. We used boosted regression tree modeling to evaluate the probability of occurrence of the most common genera found in our dataset based on 10 satellite-derivable, geomatics and field survey variables which could be potential sources or transport mechanisms through the watershed or survival factors in the water. We found that southern ecozones that possess the highest agricultural and pasture activities tend to contain lakes with the largest number of potential pathogens including several fungi associated with plant diseases. Bio-optical factors, such as colored dissolved organic matter, were highly related to the occurrence of the genera, potentially by protecting against damage from ultraviolet light. Our results demonstrate the capability of tele-epidemiology to provide useful information to develop government policies for recreational and drinking water regulations as well as for food security.

9.
Opt Express ; 29(14): 21084-21112, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265904

RESUMEN

Studying the biogeochemistry of the Southern Ocean using remote sensing relies on accurate interpretation of ocean colour through bio-optical and biogeochemical relationships between quantities and properties of interest. During the Antarctic Circumnavigation Expedition of the 2016/2017 Austral Summer, we collected a spatially comprehensive dataset of phytoplankton pigment concentrations, particulate absorption and particle size distribution and compared simple bio-optical and particle property relationships as a function of chlorophyll a. Similar to previous studies we find that the chlorophyll-specific phytoplankton absorption coefficient is significantly lower than in other oceans at comparable chlorophyll concentrations. This appears to be driven in part by lower concentrations of accessory pigments per unit chlorophyll a as well as increased pigment packaging due to relatively larger sized phytoplankton at low chlorophyll a than is typically observed in other oceans. We find that the contribution of microphytoplankton (>20 µm size) to chlorophyll a estimates of phytoplankton biomass is significantly higher than expected for the given chlorophyll a concentration, especially in higher latitudes south of the Southern Antarctic Circumpolar Current Front. Phytoplankton pigments are more packaged in larger cells, which resulted in a flattening of phytoplankton spectra as measured in these samples when compared to other ocean regions with similar chlorophyll a concentration. Additionally, we find that at high latitude locations in the Southern Ocean, pheopigment concentrations can exceed mono-vinyl chlorophyll a concentrations. Finally, we observed very different relationships between particle volume and chlorophyll a concentrations in high and low latitude Southern Ocean waters, driven by differences in phytoplankton community composition and acclimation to environmental conditions and varying contribution of non-algal particles to the particulate matter. Our data confirm that, as previously suggested, the relationships between bio-optical properties and chlorophyll a in the Southern Ocean are different to other oceans. In addition, distinct bio-optical properties were evident between high and low latitude regions of the Southern Ocean basin. Here we provide a region-specific set of power law functions describing the phytoplankton absorption spectrum as a function of chlorophyll a.


Asunto(s)
Clorofila/análisis , Monitoreo del Ambiente/métodos , Océanos y Mares , Material Particulado/análisis , Fitoplancton/química , Biomasa , Humanos , Estudios Retrospectivos
10.
J Plankton Res ; 43(3): 492-496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084089

RESUMEN

Phytoplankton images were collected using an Imaging Flow Cytobot moored in the mesotrophic lake Lac Montjoie (Quebec, Canada). Cystodinium-an unusual dinoflagellate genus-was found during manual classification of the images into taxonomic groups while building an automated classifier. Cystodinium's particularity is that while it can take a typical motile dinoflagellate form, it is thought to exist primarily as an immotile photosynthetically competent parasitic cyst in the shape of a crescent moon. Observations presented here are of this immotile lunate cyst. Manually classified images revealed that the majority of the Cystodinium found (86%) were attached to other microalgae or detrital material while the rest were unattached. The established auto-classifier was only able to correctly identify unattached Cystodinium images and thus was used to generate time series as cells per 100 mL for the unattached cell subset. Our observations, coupled with a literature review, lead us to question the parasitic nature of this taxonomic group.

11.
Front Public Health ; 8: 607997, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324604

RESUMEN

Performing microbiological assays on environmental samples in field settings poses logistical challenges with respect to the availability of suitable equipment or the ability to get samples to the laboratory in a timely fashion. For example, the viability of some bacteria can decrease greatly between sampling and arrival to the laboratory for processing. We developed and constructed rugged, reliable, and cost-effective portable incubators that were used by 10 independent field teams to perform microbiological assays on surface water samples from lakes across Canada. Rigorous testing and validation of our incubators ensured that incubation conditions were consistent within and across all 10 field teams and 2 sampling years. Samples from all sites were processed in duplicate and bacterial counts were highly repeatable within and across sampling teams. Bacterial counts were also found to be statistically equivalent to counts obtained with standard laboratory techniques using a conventional incubator. Using this method, thermotolerant coliforms (TTCs) and Escherichia coli were quantified from 432 lakes, allowing comparison to both historical datasets that relied on TTCs and those following current guidelines that use E. coli counts. We found higher loads at the shoreline than the middle of lakes and different patterns between ecozones. E. coli was not frequently detected, but many lakes exceeded Canadian guideline values for activities such as swimming and some even exceeded the guideline value for secondary recreational activities such as boating. To the best of our knowledge, this is the largest bacteriological water quality assessment of freshwater lakes to date in terms of both spatial scale and the number of lakes sampled. Our incubator design can be easily adapted for a wide variety of researcher goals and represents a robust platform for field studies and other applications, including those in remote or low-resources settings.


Asunto(s)
Bacterias , Escherichia coli , Canadá , Incubadoras , Microbiología del Agua
12.
Sci Total Environ ; 712: 136239, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31931192

RESUMEN

The widespread and persistent contamination of freshwater environments by low concentrations of pesticides is a growing concern worldwide. In aquatic environments, herbicide pollution is of greatest concern for phytoplankton, due to their similarities to terrestrial plants. Through the use of Fast Repetition Rate Fluorometry (FRRF) during weeklong experiments on 10 phytoplankton cultures from 4 classes and 4 natural communities, we demonstrate that PSII-inhibiting herbicides, notably atrazine that is extensively used in North America, consistently have effects on freshwater phytoplankton photophysiology at concentrations far below concentrations affecting the most sensitive species in previous studies. The parameters specific to FRRF (Ρ, σ, τ1, τ2, τ3) were those most sensitive to PSII inhibitors, compared to the standard fluorescence parameters derived from other fluorescence protocols such as Pulse Amplitude Modulation (PAM) fluorometry (F0, Fm, Fv/Fm) and extracted chlorophyll a concentrations. Based on these findings, existing national environmental guidelines and standards are insufficient to adequately prevent adverse effects of atrazine and other PSII inhibiting herbicides on algal physiology in aquatic ecosystems.


Asunto(s)
Fitoplancton , Acetamidas , Atrazina , Clorofila , Clorofila A , Diurona , Ecosistema , Fluorescencia , Herbicidas , América del Norte , Fotosíntesis , Contaminantes Químicos del Agua
13.
Sci Total Environ ; 695: 133668, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31419692

RESUMEN

The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership. LakePulse uses traditional approaches for limnological monitoring as well as state-of-the-art methods in the fields of genomics, emerging contaminants, greenhouse gases, invasive pathogens, paleolimnology, spatial modelling, statistical analysis, and remote sensing. A coordinated sampling program of about 680 lakes together with historical archives and a geomatics analysis of over 80,000 lake watersheds are used to examine the extent to which lakes are being altered now and in the future, and how this impacts aquatic ecosystem services of societal importance. Herein we review the network context, objectives and methods.

14.
Bioresour Technol ; 267: 657-665, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30059946

RESUMEN

Adoption of microalgae-sourced products depends on the economic feasibility. In the case of fatty acids, it is crucial to obtain high lipid yield, especially in the form of storage lipids (TAGs). However, the production of these lipids often comes into competition with the microalgae biomass, resulting in a decrease in growth. A microalgae culture integration project was conducted in an industrial park in Canada in order to cultivate microalgae from park's wastewaters and then obtain products from the biomass. Different deficiencies and stresses were tested to evaluate what condition allowed the induction of the highest lipids accumulation without compromising the growth of microalgae. The results showed that the medium controlled to pH 7.0 allowed reaching the largest amount of extracted lipids (28 ±â€¯4.3%). Companies involved in this project could be able to make significant savings by the reduced wastewater treatment costs and by not adding expensive nutrients in culture.


Asunto(s)
Lípidos/biosíntesis , Microalgas , Aguas Residuales , Bacterias , Biocombustibles , Biomasa , Canadá
15.
Environ Microbiol ; 20(7): 2568-2584, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29921005

RESUMEN

Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Asunto(s)
Variación Genética , Cubierta de Hielo/microbiología , Lagos/microbiología , Metagenoma , Verrucomicrobia/genética , Canadá , Ecosistema , Genoma Bacteriano , Fitoplancton , ARN Ribosómico 16S , Estaciones del Año , Microbiología del Agua
16.
Opt Express ; 26(2): 711-729, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401953

RESUMEN

Diurnal variations of phytoplankton size distributions, chlorophyll, carbon and nitrogen content, in vivo fluorescence and associated optical absorption and scattering properties were observed in the laboratory to help understand in situ and spatial observations. We grew triplicate semi-continuous cultures of T. pseudonana, D. tertiolecta, P. tricornutum and E. huxleyi under a sinusoidal light regime. We observed diurnal variations in the particulate absorption (ap), scattering (bp), attenuation (cp), and backscattering coefficients (bbp), which correlate with carbon and Chl concentrations. Relative variations from sunrise of bbp are slightly lower than those of cp, suggesting that bbp diurnal increases observed in nature are partly caused by phytoplankton. Non-concurrent changes of carbon and Chl-specific backscattering and scattering coefficients and optical cross-sections however indicates that using backscattering to infer scattering or biomass must be done with care.


Asunto(s)
Biomasa , Ritmo Circadiano , Fenómenos Ópticos , Fitoplancton/crecimiento & desarrollo , Carbono/análisis , Clorofila/análisis , Iluminación , Nitrógeno/análisis , Fitoplancton/química , Dispersión de Radiación
17.
Appl Opt ; 54(18): 5805-16, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-26193033

RESUMEN

Measured spectral absorption coefficients were inverted to infer phytoplankton concentration in three size classes (picoplankton, nanoplankton, and microplankton), chlorophyll concentration [Chl], and both magnitude and spectral shape of absorption by colored detrital matter (CDM). Our algorithm allowed us to solve for the nonlinear factor of CDM absorption slope separately from the other linear factors, thus fully utilizing the additive characteristic inherent in absorption coefficients. We validated the inversion with three datasets: two spatially distributed global datasets, the Laboratoire d'Océanographie de Villefranche dataset and the NASA bio-Optical Marine Algorithm Dataset, and a time series coastal dataset, the Martha's Vineyard Coastal Observatory dataset. Comparison with high performance liquid chromatography analyses showed that the phytoplankton size classes can be retrieved with correlation coefficients (r)>0.7, root mean square errors of 0.2, and median relative errors of 20% in oceanic waters and with similar performance in coastal waters. Much improved agreement was found for the entire phytoplankton population, with r>0.90 for [Chl] and absorption coefficients (aph) for all three datasets. The inferred aCDM(400) and CDM spectral slope agree within ±4% of measurements in both oceanic and coastal waters. The results indicate that the chlorophyll-a specific absorption spectra used as an inversion kernel represent well the global mean states for each of the three phytoplankton size classes. The method can be applied to either bulk or particulate absorption data and is spectrally flexible.


Asunto(s)
Monitoreo del Ambiente/métodos , Fitoplancton/fisiología , Algoritmos , Clorofila/química , Clorofila A , Cromatografía Líquida de Alta Presión , Simulación por Computador , Bases de Datos Factuales , Geografía , Modelos Estadísticos , Oceanografía , Océanos y Mares , Óptica y Fotónica , Agua/química
18.
Photosynth Res ; 124(3): 275-91, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25862645

RESUMEN

When growth irradiance changes, phytoplankton acclimates by changing allocations to cellular components to re-balance their capacity to absorb photons versus their capacity to use the electrons from the oxidation of water at photosystem II. Published changes in the cellular allocations resulting from photoacclimation across algal groups highlight that algae adopt different strategies. We examined the photoacclimation of the photosynthetic apparatus of six marine phytoplankters under near-natural diel irradiance patterns. For most of the phytoplankters, Chl a per structural photosystem II unit decreased with increasing growth irradiance, but a parallel decline in optical packaging effect allowed cells to maintain their functional absorption cross section serving active photosystem II units (σ PSII). Furthermore, no significant changes were observed in the ratio of Chl a per photosystem I. The diatom Skeletonema marinoi proved an exception to this pattern as Chl a per photosystem II is stable and Chl a per photosystem I slightly decreased with light intensity. A clear decrease in the photosystem content per cell was observed for all species except for Thalassiosira oceanica and S. marinoi. Rubisco content per cell showed little variation with irradiance for most algae, except for a 3-fold increase in S. marinoi. A ~700 % increase in the Rubisco:photosystem ratio across species with increasing growth irradiance indicates this is a key cellular stoichiometric adjustment to balance photon absorption capacity and the carbon reduction capacity. Increasing the Rubisco:photosystem ratio occurs through a decrease in the photosystems per cell for most of the phytoplankters in this study, except in the case of S. marinoi where Rubisco per cell increased.


Asunto(s)
Diatomeas/efectos de la radiación , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Fitoplancton/efectos de la radiación , Ribulosa-Bifosfato Carboxilasa/metabolismo , Aclimatación , Clorofila/metabolismo , Clorofila A , Diatomeas/metabolismo , Fitoplancton/metabolismo
19.
Opt Express ; 22(23): 29223-33, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25402161

RESUMEN

Many studies have consistently found that the particle backscattering coefficient (bbp) in oligotrophic oceans estimated from remote-sensing reflectance (Rrs) using semi-analytical algorithms is higher than that from in situ measurements. This overestimation can be as high as ~300% for some oligotrophic ocean regions. Various sources potentially responsible for this discrepancy are examined. Further, after applying an empirical algorithm to correct the impact from Raman scattering, it is found that bbp from analytical inversion of Rrs is in good agreement with that from in situ measurements, and that a closure is achieved.


Asunto(s)
Algoritmos , Simulación por Computador , Monitoreo del Ambiente/métodos , Luz , Nefelometría y Turbidimetría/métodos , Tecnología de Sensores Remotos/métodos , Dispersión de Radiación , Clorofila/análisis , Océanos y Mares
20.
Appl Opt ; 51(21): 5085-99, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22858949

RESUMEN

The volume scattering function (VSF) of particles in water depends on the particles' size distribution and composition as well as their shape and internal structure. Inversion of the VSF thus provides information about the particle population. The commercially available LISST instrument measures the scattering at near forward angles to estimate the bulk size distribution of particles larger than about 1 µm. By using scattering over the full angular range (0°-180°), the recently improved VSF-inversion method [X. Zhang, M. Twardowski, and M. Lewis, Appl. Opt. 50, 1240 (2011).] can characterize particles in terms of particle subpopulations, which are described by their unique size distribution and composition. Concurrent deployments of the Multispectral Volume Scattering Meter and the LISST in three coastal waters (i.e., Chesapeake Bay, Mobile Bay, and Monterey Bay) allowed us to compare the size distributions derived from these two different methods. We also obtained indirect validation of the results for submicrometer particles and for the composition of particles provided by the VSF-inversion method. For particle sizes ranging from 1 to 100 µm, the concentration was shown to vary over 10 orders of magnitude, and excellent agreement was found between the two methods with a mean relative difference less than 10% for the total size distributions. The inversion results also reproduced spectral variations in the shape of the VSF, although these spectral variations were not frequently observed in our study. The increased backscattering towards the shorter wavelengths was explained by the stronger influence of submicrometer particles affecting the backscattering. Based on published measurements of cell sizes and intracellular chlorophyll-a [Chl] concentrations over a wide range of phytoplankton species and strains, [Chl] was estimated for the inverted subpopulations that were identified as phytoplankton based on their refractive index and mean sizes. The estimated [Chl] agreed well with the fluorescence-based estimates in both magnitude and trend, thus reproducing a bloom event observed at a time series station.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...