Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Skeletal Radiol ; 53(7): 1369-1379, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38267763

RESUMEN

OBJECTIVE: To identify the region of interest (ROI) to represent injury and observe between-limb diffusion tensor imaging (DTI) microstructural differences in muscle following hamstring strain injury. MATERIALS AND METHODS: Participants who sustained a hamstring strain injury prospectively underwent 3T-MRI of bilateral thighs using T1, T2, and diffusion-weighted imaging at time of injury (TOI), return to sport (RTS), and 12 weeks after RTS (12wks). ROIs were using the hyperintense region on a T2-weighted sequence: edema, focused edema, and primary muscle injured excluding edema (no edema). Linear mixed-effects models were used to compare diffusion parameters between ROIs and timepoints and limbs and timepoints. RESULTS: Twenty-four participants (29 injuries) were included. A significant ROI-by-timepoint interaction was detected for all diffusivity measures. The edema and focused edema ROIs demonstrated increased diffusion at TOI compared to RTS for all diffusivity measures (p-values < 0.006), except λ1 (p-values = 0.058-0.12), and compared to 12wks (p-values < 0.02). In the no edema ROI, differences in diffusivity measures were not observed (p-values > 0.82). At TOI, no edema ROI diffusivity measures were lower than the edema ROI (p-values < 0.001) but not at RTS or 12wks (p-values > 0.69). A significant limb-by-timepoint interaction was detected for all diffusivity measures with increased diffusion in the involved limb at TOI (p-values < 0.001) but not at RTS or 12wks (p-values > 0.42). Significant differences in fractional anisotropy over time or between limbs were not detected. CONCLUSION: Hyperintensity on T2-weighted imaging used to define the injured region holds promise in describing muscle microstructure following hamstring strain injury by demonstrating between-limb differences at TOI but not at follow-up timepoints.


Asunto(s)
Traumatismos en Atletas , Imagen de Difusión Tensora , Músculos Isquiosurales , Esguinces y Distensiones , Humanos , Imagen de Difusión Tensora/métodos , Masculino , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/lesiones , Femenino , Adulto Joven , Estudios Prospectivos , Esguinces y Distensiones/diagnóstico por imagen , Traumatismos en Atletas/diagnóstico por imagen , Volver al Deporte , Adolescente
2.
Phys Med Biol ; 69(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38252969

RESUMEN

Objective. Simultaneous PET/MR scanners combine the high sensitivity of MR imaging with the functional imaging of PET. However, attenuation correction of breast PET/MR imaging is technically challenging. The purpose of this study is to establish a robust attenuation correction algorithm for breast PET/MR images that relies on deep learning (DL) to recreate the missing portions of the patient's anatomy (truncation completion), as well as to provide bone information for attenuation correction from only the PET data.Approach. Data acquired from 23 female subjects with invasive breast cancer scanned with18F-fluorodeoxyglucose PET/CT and PET/MR localized to the breast region were used for this study. Three DL models, U-Net with mean absolute error loss (DLMAE) model, U-Net with mean squared error loss (DLMSE) model, and U-Net with perceptual loss (DLPerceptual) model, were trained to predict synthetic CT images (sCT) for PET attenuation correction (AC) given non-attenuation corrected (NAC) PETPET/MRimages as inputs. The DL and Dixon-based sCT reconstructed PET images were compared against those reconstructed from CT images by calculating the percent error of the standardized uptake value (SUV) and conducting Wilcoxon signed rank statistical tests.Main results. sCT images from the DLMAEmodel, the DLMSEmodel, and the DLPerceptualmodel were similar in mean absolute error (MAE), peak-signal-to-noise ratio, and normalized cross-correlation. No significant difference in SUV was found between the PET images reconstructed using the DLMSEand DLPerceptualsCTs compared to the reference CT for AC in all tissue regions. All DL methods performed better than the Dixon-based method according to SUV analysis.Significance. A 3D U-Net with MSE or perceptual loss model can be implemented into a reconstruction workflow, and the derived sCT images allow successful truncation completion and attenuation correction for breast PET/MR images.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos
3.
J Biomech ; 163: 111960, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38290304

RESUMEN

Hamstring strain injuries (HSI) are a common occurrence in athletics and complicated by limited prognostic indicators and high rates of reinjury. Assessment of injury characteristics at the time of injury (TOI) may be used to manage athlete expectations for time to return to sport (RTS) and mitigate reinjury risk. Magnetic resonance imaging (MRI) is routinely used in soft tissue injury management, but its prognostic value for HSI is widely debated. Recent advancements in musculoskeletal MRI, such as diffusion tensor imaging (DTI), have allowed for quantitative measures of muscle microstructure assessment. The purpose of this study was to determine the association of TOI MRI-based measures, including the British Athletic Muscle Injury Classification (BAMIC) system, edema volume, and DTI metrics, with time to RTS and reinjury incidence. Negative binomial regressions and generalized estimating equations were used to determine relationships between imaging measures and time to RTS and reinjury, respectively. Twenty-six index injuries were observed, with five recorded reinjuries. A significant association was not detected between BAMIC score and edema volume at TOI with days to RTS (p-values ≥ 0.15) or reinjury (p-values ≥ 0.13). Similarly, a significant association between DTI metrics and days to RTS was not detected (p-values ≥ 0.11). Although diffusivity metrics are expected to increase following injury, decreased values were observed in those who reinjured (mean diffusivity, p = 0.016; radial diffusivity, p = 0.02; principal effective diffusivity eigenvalues, p-values = 0.007-0.057). Additional work to further understand the directional relationship observed between DTI metrics and reinjury status and the influence of external factors is warranted.


Asunto(s)
Traumatismos en Atletas , Lesiones de Repetición , Traumatismos de los Tejidos Blandos , Humanos , Imagen de Difusión Tensora , Volver al Deporte , Incidencia , Traumatismos en Atletas/diagnóstico por imagen , Edema/diagnóstico por imagen
4.
Skeletal Radiol ; 53(4): 637-648, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37728629

RESUMEN

OBJECTIVE: To determine if MRI-based radiomics from hamstring muscles are related to injury and if the features could be used to perform a time to return to sport (RTS) classification. We hypothesize that radiomics from hamstring muscles, especially T2-weighted and diffusion tensor imaging-based features, are related to injury and can be used for RTS classification. SUBJECTS AND METHODS: MRI data from 32 athletes at the University of Wisconsin-Madison that sustained a hamstring strain injury were collected. Diffusion tensor imaging and T1- and T2-weighted images were processed, and diffusion maps were calculated. Radiomics features were extracted from the four hamstring muscles in each limb and for each MRI modality, individually. Feature selection was performed and multiple support vector classifiers were cross-validated to differentiate between involved and uninvolved limbs and perform binary (≤ or > 25 days) and multiclass (< 14 vs. 14-42 vs. > 42 days) classification of RTS. RESULT: The combination of radiomics features from all diffusion tensor imaging and T2-weighted images provided the most accurate differentiation between involved and uninvolved limbs (AUC ≈ 0.84 ± 0.16). For the binary RTS classification, the combination of all extracted radiomics offered the most accurate classification (AUC ≈ 0.95 ± 0.15). While for the multiclass RTS classification, the combination of features from all the diffusion tensor imaging maps provided the most accurate classification (weighted one vs. rest AUC ≈ 0.81 ± 0.16). CONCLUSION: This pilot study demonstrated that radiomics features from hamstring muscles are related to injury and have the potential to predict RTS.


Asunto(s)
Imagen de Difusión Tensora , Músculos Isquiosurales , Humanos , Proyectos Piloto , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/lesiones , Volver al Deporte , Radiómica , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
5.
Artículo en Inglés | MEDLINE | ID: mdl-37680669

RESUMEN

In recent years, tractography based on diffusion magnetic resonance imaging (dMRI) has become a popular tool for studying microstructural changes resulting from brain diseases like Parkinson's Disease (PD). Quantitative anisotropy (QA) is a parameter that is used in deterministic fiber tracking as a measure of connection between brain regions. It remains unclear, however, if microstructural changes caused by lesioning the median forebrain bundle (MFB) to create a Parkinsonian rat model can be resolved using tractography based on ex-vivo diffusion MRI. This study aims to fill this gap and enable future mechanistic research on structural changes of the whole brain network rodent models of PD. Specifically, it evaluated the ability of correlational tractography to detect structural changes in the MFB of 6-hydroxydopamine (6-OHDA) lesioned rats. The findings reveal that correlational tractography can detect structural changes in lesioned MFB and differentiate between the 6-OHDA and control groups. Imaging results are supported by behavioral and histological evidence demonstrating that 6-OHDA lesioned rats were indeed Parkinsonian. The results suggest that QA and correlational tractography is appropriate to examine local structural changes in rodent models of neurodegenerative disease. More broadly, we expect that similar techniques may provide insight on how disease alters structure throughout the brain, and as a tool to optimize therapeutic interventions.

7.
Front Chem ; 11: 1167783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37179772

RESUMEN

Introduction: 43Sc and 44gSc are both positron-emitting radioisotopes of scandium with suitable half-lives and favorable positron energies for clinical positron emission tomography (PET) imaging. Irradiation of isotopically enriched calcium targets has higher cross sections compared to titanium targets and higher radionuclidic purity and cross sections than natural calcium targets for reaction routes possible on small cyclotrons capable of accelerating protons and deuterons. Methods: In this work, we investigate the following production routes via proton and deuteron bombardment on CaCO3 and CaO target materials: 42Ca(d,n)43Sc, 43Ca(p,n)43Sc, 43Ca(d,n)44gSc, 44Ca(p,n)44gSc, and 44Ca(p,2n)43Sc. Radiochemical isolation of the produced radioscandium was performed with extraction chromatography using branched DGA resin and apparent molar activity was measured with the chelator DOTA. The imaging performance of 43Sc and 44gSc was compared with 18F, 68Ga, and 64Cu on two clinical PET/CT scanners. Discussion: The results of this work demonstrate that proton and deuteron bombardment of isotopically enriched CaO targets produce high yield and high radionuclidic purity 43Sc and 44gSc. Laboratory capabilities, circumstances, and budgets are likely to dictate which reaction route and radioisotope of scandium is chosen.

8.
Bioelectron Med ; 9(1): 9, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118841

RESUMEN

BACKGROUND: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS: We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS: VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS: We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.

9.
J Nucl Med ; 63(10): 1604-1610, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35086896

RESUMEN

Head motion during brain PET imaging can significantly degrade the quality of the reconstructed image, leading to reduced diagnostic value and inaccurate quantitation. A fully data-driven motion correction approach was recently demonstrated to produce highly accurate motion estimates (<1 mm) with high temporal resolution (≥1 Hz), which can then be used for a motion-corrected reconstruction. This can be applied retrospectively with no impact on the clinical image acquisition protocol. We present a reader-based evaluation and an atlas-based quantitative analysis of this motion correction approach within a clinical cohort. Methods: Clinical patient data were collected over 2019-2020 and processed retrospectively. Motion was estimated using image-based registration on reconstructions of ultrashort frames (0.6-1.8 s), after which list-mode reconstructions that were fully motion-corrected were performed. Two readers graded the motion-corrected and uncorrected reconstructions. An atlas-based quantitative analysis was performed. Paired Wilcoxon tests were used to test for significant differences in reader scores and SUVs between reconstructions. The Levene test was used to determine whether motion correction had a greater impact on quantitation in the presence of motion than when motion was low. Results: Fifty standard clinical 18F-FDG brain PET datasets (age range, 13-83 y; mean ± SD, 59 ± 20 y; 27 women) from 3 scanners were collected. The reader study showed a significantly different, diagnostically relevant improvement by motion correction when motion was present (P = 0.02) and no impact in low-motion cases. Eight percent of all datasets improved from diagnostically unacceptable to acceptable. The atlas-based analysis demonstrated a significant difference between the motion-corrected and uncorrected reconstructions in cases of high motion for 7 of 8 regions of interest (P < 0.05). Conclusion: The proposed approach to data-driven motion estimation and correction demonstrated a clinically significant impact on brain PET image reconstruction.


Asunto(s)
Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Estudios Retrospectivos , Adulto Joven
10.
J Neurol ; 269(1): 269-279, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34043042

RESUMEN

BACKGROUND: Separating antibody-negative neuromyelitis optica spectrum disorders (NMOSD) from multiple sclerosis (MS) in borderline cases is extremely challenging due to lack of biomarkers. Elucidating different pathologies within the likely heterogenous antibody-negative NMOSD/MS overlap syndrome is, therefore, a major unmet need which would help avoid disability from inappropriate treatment. OBJECTIVE: In this study we aimed to identify distinct subgroups within the antibody-negative NMOSD/MS overlap syndrome. METHODS: Twenty-five relapsing antibody-negative patients with NMOSD features underwent a prospective brain and spinal cord MRI. Subgroups were identified by an unsupervised algorithm based on pre-selected NMOSD/MS discriminators. RESULTS: Four subgroups were identified. Patients from Group 1 termed "MS-like" (n = 6) often had central vein sign and cortical lesions (83% and 67%, respectively). All patients from Group 2 ("spinal MS-like", 8) had short-segment myelitis and no MS-like brain lesions. Group 3 ("classic NMO-like", 6) had high percentage of bilateral optic neuritis and longitudinally extensive transverse myelitis (LETM, 80% and 60%, respectively) and normal brain appearance (100%). Group 4 ("NMO-like with brain involvement", 5) typically had a history of NMOSD-like brain lesions and LETM. When compared with other groups, Group 4 had significantly decreased fractional anisotropy in non-lesioned tracts (0.46 vs. 0.49, p = 0.003) and decreased thalamus volume (0.84 vs. 0.98, p = 0.04). CONCLUSIONS: NMOSD/MS cohort contains distinct subgroups likely corresponding to different pathologies and requiring tailored treatment. We propose that non-conventional MRI might help optimise diagnosis in these challenging patients.


Asunto(s)
Esclerosis Múltiple , Mielitis Transversa , Neuromielitis Óptica , Acuaporina 4 , Autoanticuerpos , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Recurrencia Local de Neoplasia , Neuromielitis Óptica/diagnóstico por imagen , Estudios Prospectivos
11.
Hum Brain Mapp ; 42(18): 5956-5972, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34541735

RESUMEN

Formalin fixation has been shown to substantially reduce T2 estimates, primarily driven by the presence of fixative in tissue. Prior to scanning, post-mortem samples are often placed into a fluid that has more favourable imaging properties. This study investigates whether there is evidence for a change in T2 in regions close to the tissue surface due to fixative outflux into this surrounding fluid. Furthermore, we investigate whether a simulated spatial map of fixative concentration can be used as a confound regressor to reduce T2 inhomogeneity. To achieve this, T2 maps and diffusion tensor estimates were obtained in 14 whole, formalin-fixed post-mortem brains placed in Fluorinert approximately 48 hr prior to scanning. Seven brains were fixed with 10% formalin and seven brains were fixed with 10% neutral buffered formalin (NBF). Fixative outflux was modelled using a proposed kinetic tensor (KT) model, which incorporates voxelwise diffusion tensor estimates to account for diffusion anisotropy and tissue-specific diffusion coefficients. Brains fixed with 10% NBF revealed a spatial T2 pattern consistent with modelled fixative outflux. Confound regression of fixative concentration reduced T2 inhomogeneity across both white and grey matter, with the greatest reduction attributed to the KT model versus simpler models of fixative outflux. No such effect was observed in brains fixed with 10% formalin. Correlations between the transverse relaxation rate R2 and ferritin/myelin proteolipid protein (PLP) histology lead to an increased similarity for the relationship between R2 and PLP for the two fixative types after KT correction.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión Tensora/métodos , Modelos Teóricos , Conservación de Tejido , Diagnóstico , Fijadores , Formaldehído , Humanos
12.
Mol Psychiatry ; 26(12): 7346-7354, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535766

RESUMEN

Inflammation is associated with depressive symptoms and innate immune mechanisms are likely causal in some cases of major depression. Systemic inflammation also perturbs brain function and microstructure, though how these are related remains unclear. We recruited N = 46 healthy controls, and N = 83 depressed cases stratified by CRP (> 3 mg/L: N = 33; < 3 mg/L: N = 50). All completed clinical assessment, venous blood sampling for C-reactive protein (CRP) assay, and brain magnetic resonance imaging (MRI). Micro-structural MRI parameters including proton density (PD), a measure of tissue water content, were measured at 360 cortical and 16 subcortical regions. Resting-state fMRI time series were correlated to estimate functional connectivity between individual regions, as well as the sum of connectivity (weighted degree) of each region. Multiple tests for regional analysis were controlled by the false discovery rate (FDR = 5%). We found that CRP was significantly associated with PD in precuneus, posterior cingulate cortex (pC/pCC) and medial prefrontal cortex (mPFC); and with functional connectivity between pC/pCC, mPFC and hippocampus. Depression was associated with reduced weighted degree of pC/pCC, mPFC, and other nodes of the default mode network (DMN). Thus CRP-related increases in proton density-a plausible marker of extracellular oedema-and changes in functional connectivity were anatomically co-localised with DMN nodes that also demonstrated significantly reduced hubness in depression. We suggest that effects of peripheral inflammation on DMN node micro-structure and connectivity may mediate inflammatory effects on depression.


Asunto(s)
Encéfalo , Depresión , Mapeo Encefálico , Humanos , Inflamación , Imagen por Resonancia Magnética/métodos , Vías Nerviosas
13.
Invest Ophthalmol Vis Sci ; 62(10): 21, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34410298

RESUMEN

Purpose: To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI). Methods: Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes. For genetic models, the DBA/2J mouse model of pigmentary glaucoma, the LTBP2 mutant feline model of congenital glaucoma, and the transgenic TBK1 mouse model of normotensive glaucoma were compared with their respective genetically matched healthy controls. DTI parameters, including fractional anisotropy, axial diffusivity, and radial diffusivity, were evaluated along the optic nerve and optic tract. Results: Significantly elevated IOP relative to controls was observed in each animal model except for the transgenic TBK1 mice. Significantly lower fractional anisotropy and higher radial diffusivity were observed along the visual pathways of the microbead- and laser-induced rodent models, the DBA/2J mice, and the LTBP2-mutant cats compared with their respective healthy controls. The DBA/2J mice also exhibited lower axial diffusivity, which was not observed in the other models examined. No apparent DTI change was observed in the transgenic TBK1 mice compared with controls. Conclusions: Chronic IOP elevation was accompanied by decreased fractional anisotropy and increased radial diffusivity along the optic nerve or optic tract, suggestive of disrupted microstructural integrity in both inducible and genetic glaucoma animal models. The effects on axial diffusivity differed between models, indicating that this DTI metric may represent different aspects of pathological changes over time and with severity.


Asunto(s)
Imagen de Difusión Tensora/métodos , Glaucoma de Ángulo Abierto/diagnóstico , Sustancia Gris/patología , Presión Intraocular/fisiología , Nervio Óptico/patología , Vías Visuales/patología , Animales , Anisotropía , Gatos , Modelos Animales de Enfermedad , Glaucoma de Ángulo Abierto/fisiopatología , Ratones , Ratones Endogámicos DBA , Fibras Nerviosas/patología , Ratas , Ratas Sprague-Dawley
14.
Brain Struct Funct ; 226(9): 2819-2838, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34347164

RESUMEN

The visual perception of 3D depth is underpinned by the brain's ability to combine signals from the left and right eyes to produce a neural representation of binocular disparity for perception and behaviour. Electrophysiological studies of binocular disparity over the past 2 decades have investigated the computational role of neurons in area V1 for binocular combination, while more recent neuroimaging investigations have focused on identifying specific roles for different extrastriate visual areas in depth perception. Here we investigate the population receptive field properties of neural responses to binocular information in striate and extrastriate cortical visual areas using ultra-high field fMRI. We measured BOLD fMRI responses while participants viewed retinotopic mapping stimuli defined by different visual properties: contrast, luminance, motion, correlated and anti-correlated stereoscopic disparity. By fitting each condition with a population receptive field model, we compared quantitatively the size of the population receptive field for disparity-specific stimulation. We found larger population receptive fields for disparity compared with contrast and luminance in area V1, the first stage of binocular combination, which likely reflects the binocular integration zone, an interpretation supported by modelling of the binocular energy model. A similar pattern was found in region LOC, where it may reflect the role of disparity as a cue for 3D shape. These findings provide insight into the binocular receptive field properties underlying processing for human stereoscopic vision.


Asunto(s)
Disparidad Visual , Corteza Visual , Percepción de Profundidad , Humanos , Neuronas , Estimulación Luminosa , Visión Binocular , Corteza Visual/diagnóstico por imagen , Percepción Visual
15.
Med Phys ; 48(6): 3031-3041, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33880778

RESUMEN

PURPOSE: Data-driven rigid motion estimation for PET brain imaging is usually performed using data frames sampled at low temporal resolution to reduce the overall computation time and to provide adequate signal-to-noise ratio in the frames. In recent work it has been demonstrated that list-mode reconstructions of ultrashort frames are sufficient for motion estimation and can be performed very quickly. In this work we take the approach of using image-based registration of reconstructions of very short frames for data-driven motion estimation, and optimize a number of reconstruction and registration parameters (frame duration, MLEM iterations, image pixel size, post-smoothing filter, reference image creation, and registration metric) to ensure accurate registrations while maximizing temporal resolution and minimizing total computation time. METHODS: Data from 18 F-fluorodeoxyglucose (FDG) and 18 F-florbetaben (FBB) tracer studies with varying count rates are analyzed, for PET/MR and PET/CT scanners. For framed reconstructions using various parameter combinations interframe motion is simulated and image-based registrations are performed to estimate that motion. RESULTS: For FDG and FBB tracers using 4 × 105 true and scattered coincidence events per frame ensures that 95% of the registrations will be accurate to within 1 mm of the ground truth. This corresponds to a frame duration of 0.5-1 sec for typical clinical PET activity levels. Using four MLEM iterations with no subsets, a transaxial pixel size of 4 mm, a post-smoothing filter with 4-6 mm full width at half maximum, and averaging two or more frames to create the reference image provides an optimal set of parameters to produce accurate registrations while keeping the reconstruction and processing time low. CONCLUSIONS: It is shown that very short frames (≤1 sec) can be used to provide accurate and quick data-driven rigid motion estimates for use in an event-by-event motion corrected reconstruction.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Tomografía de Emisión de Positrones , Algoritmos , Encéfalo/diagnóstico por imagen , Movimiento (Física) , Movimiento , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
17.
Radiol Imaging Cancer ; 3(1): e200091, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33575660

RESUMEN

Purpose: To compare the measurement of glucose uptake in primary invasive breast cancer using simultaneous, time-of-flight breast PET/MRI with prone time-of-flight PET/CT. Materials and Methods: In this prospective study, women with biopsy-proven invasive breast cancer undergoing preoperative breast MRI from 2016 to 2018 were eligible. Participants who had fasted underwent prone PET/CT of the breasts approximately 60 minutes after injection of 370 MBq (10 mCi) fluorine 18 fluorodeoxyglucose (18F-FDG) followed by prone PET/MRI using standard clinical breast MRI sequences performed simultaneously with PET acquisition. Volumes of interest were drawn for tumors and contralateral normal breast fibroglandular tissue to calculate standardized uptake values (SUVs). Spearman correlation, Wilcoxon signed ranked test, Mann-Whitney test, and Bland-Altman analyses were performed. Results: Twenty-three women (mean age, 50 years; range, 33-70 years) were included. Correlation between tumor uptake values measured with PET/MRI and PET/CT was strong (r s = 0.95-0.98). No difference existed between modalities for tumor maximum SUV (SUVmax) normalized to normal breast tissue SUVmean (normSUVmax) (P = .58). The least amount of measurement bias was observed with normSUVmax, +3.86% (95% limits of agreement: -28.92, +36.64). Conclusion: These results demonstrate measurement agreement between PET/CT, the current reference standard for tumor glucose uptake quantification, and simultaneous time-of-flight breast 18F-FDG PET/MRI.Keywords: Breast, Comparative Studies, PET/CT, PET/MR Supplemental material is available for this article. © RSNA, 2021See also the commentary by Mankoff and Surti in this issue.


Asunto(s)
Neoplasias de la Mama , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Glucosa , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Imagen Multimodal , Tomografía de Emisión de Positrones , Estudios Prospectivos , Radiofármacos
18.
Radiology ; 298(1): 166-172, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141004

RESUMEN

Background During simultaneous PET/MRI, flexible MRI surface coils that lay on the patient are often omitted from PET attenuation correction processing, leading to quantification bias in PET images. Purpose To identify potential PET image quality improvement by using a recently developed lightweight MRI coil technology for the anterior array (AA) surface coil in both a phantom and in vivo study. Materials and Methods A phantom study and a prospective in vivo study were performed with a PET/CT scanner under three conditions: (a) no MRI surface coil (standard of reference), (b) traditional AA coil, and (c) lightweight AA coil. AA coils were not used in attenuation correction processing to emulate clinical PET/MRI. For the phantom study, PET images were reconstructed with and without time of flight (TOF) to assess quantification accuracy and uniformity. The in vivo study consisted of 10 participants (mean age, 66 years ± 10 [standard deviation]; six men) referred for a PET/CT oncologic examination who had undergone imaging between October 2019 and February 2020. Assessment of image quantification bias (defined as the standard error of the mean values) was conducted by comparing mean liver region of interest standardized uptake values with the no-coil standard of reference. A Wilcoxon signed-rank test was used to establish significance. Results For TOF and non-TOF, respectively, the phantom study revealed a mean PET quantification bias of -9.0% and -8.6% with the traditional AA coil and a mean PET quantification bias of -4.3% and -4.0% with the lightweight AA coil. The coefficients of variation reduced from 4.3% and 6.2% with the traditional AA coil to 2.1% and 2.7% with the lightweight AA coil, which demonstrated a homogeneity benefit from the lightweight coil that was greater with, versus without, TOF reconstruction. For the in vivo study, the mean liver standardized uptake value error was -5.9% with the traditional AA coil (P = .002 vs no coil) and -2.4% with the lightweight AA coil (P = .004 vs no coil). Conclusion The lightweight anterior array coil reduced PET image quantification bias by more than 50% compared with the traditional coil. Using the lightweight coil and performing time of flight-based reconstruction each reduced the variation of error. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Hígado/anatomía & histología , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Mejoramiento de la Calidad , Anciano , Diseño de Equipo , Femenino , Humanos , Masculino , Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos
19.
Phys Med Biol ; 65(19): 19NT01, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32975219

RESUMEN

Over the last 30 years, there have been dramatic changes in phased array coil technology leading to increasing channel density and parallel imaging functionality. Current receiver array coils are rigid and often mismatched to patient's size. Recently there has been a move towards flexible coil technology, which is more conformal to the human anatomy. Despite the advances of so-called flexible surface coil arrays, these coils are still relatively rigid and limited in terms of design conformability, compromising signal-to-noise ratio (SNR) for flexibility, and are not designed for optimum parallel imaging performance. The purpose of this study is to report on the development and characterization of a 15-channel flexible foot and ankle coil, rapidly designed and constructed using highly decoupled radio-frequency (RF) coil elements. Coil performance was evaluated by performing SNR and g-factor measurements. In vivo testing was performed in a healthy volunteer using both the 15-channel coil and a commercially available 8-channel foot coil. The highly decoupled elements used in this design allow for extremely rapid development and prototyping of application-specific coils for different patient sizes (adult vs child) with minimal additional design consideration in terms of coil overlap and geometry. Image quality was comparable to a commercially available RF coil.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Relación Señal-Ruido , Adulto , Niño , Diseño de Equipo , Voluntarios Sanos , Humanos
20.
Obesity (Silver Spring) ; 27(9): 1464-1471, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31314172

RESUMEN

OBJECTIVE: Insulin regulates metabolism and influences neural health. Insulin resistance (IR) and type II diabetes have been identified as risk factors for Alzheimer disease (AD). Evidence has also suggested that myelinated white matter alterations may be involved in the pathophysiology of AD; however, it is unknown whether insulin or IR affect the underlying myelin microstructure. The relationships between insulin, IR, and myelin were examined, with the hypothesis that IR would be associated with reduced myelin. METHODS: Cognitively unimpaired adults enriched for risk factors for AD underwent multicomponent driven equilibrium single pulse observation of T1 and T2 imaging, a myelin-sensitive neuroimaging technique. Linear regressions were used to test the relationship between homeostatic model assessment of IR, insulin, and myelin water fraction (MWF) as well as interactions with APOE ε4. RESULTS: Both IR and insulin level were associated with altered myelin content, wherein a significant negative association with MWF was observed in white matter regions and a positive association with MWF was observed in gray matter. CONCLUSIONS: The results suggest that insulin and IR influence white matter myelination in a cognitively unimpaired population. Additional studies are needed to determine the extent to which this may contribute to cognitive decline or vulnerability to neurodegenerative disease.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Vaina de Mielina/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vaina de Mielina/patología , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...