Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Ecotoxicol Environ Saf ; 256: 114916, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060800

RESUMEN

In sediment environments, manganese (Mn) minerals have high dissolved organic matter (DOM) affinities, and could regulate the changes of DOM constituents and reactivity by fractionation. However, the effects of DOM fractionation by Mn minerals on the contaminant behaviors remain unclear. Herein, the transformations of mineral phases, DOM properties, and Cd(II) binding characteristics to sediment DOM before and after adsorption by four Mn oxides (δ-MnO2, ß-MnO2, γ-MnOOH, and Mn3O4) were investigated using multi-spectroscopic tools. Results showed a subtle structural variation of Mn oxides in response to DOM reduction, and no phase transformations were observed. Two-dimensional correlation spectroscopy based on synchronous fluorescence spectra and Fourier transform infrared spectroscopy indicated that tryptophan-like substances and the amide (II) N-H groups could preferentially interact with Cd(II) for the original DOM. Nevertheless, preferential bonding of Cd(II) to tyrosine-like substances and phenolic OH groups was exhibited after fractionations by Mn oxides. Furthermore, the binding stability and capacity of each DOM fraction to Cd(II) were decreased after fractionation based on the modified Stern-Volmer equation. These differences may be attributed to DOM molecules with high aromaticity, hydrophobicity, molecular weight, and amounts of O/N-containing group were preferentially removed by Mn oxides. Overall, the environmental hazard of Cd will be more severe after DOM fractionation on Mn minerals. This study facilitates a better understanding of the Cd geochemical cycle in lake sediments under the DOM-mineral interactions, and recommends being careful with outbreaks of aquatic Cd pollution when sediments are rich in dissolved protein-like components and Mn minerals.


Asunto(s)
Cadmio , Manganeso , Cadmio/química , Óxidos , Compuestos de Manganeso , Lagos/química , Minerales/química , Sustancias Húmicas/análisis
2.
Environ Sci Pollut Res Int ; 30(21): 59621-59631, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37012563

RESUMEN

We propose a novel integrated model for the recovery of tantalum from tantalum-rich waste using a combination of hydrometallurgical and bio-metallurgical processes. To this end, leaching experiments with heterotrophs (Pseudomonas putida, Bacillus subtilis and Penicillium simplicissimum) were carried out. The heterotrophic fungal strain leached manganese with an efficiency of 98%; however, no tantalum was detected in the leachate. An unidentified species did mobilise 16% tantalum in 28 days in an experiment with non-sterile tantalum capacitor scrap. Attempts to cultivate isolate and identify these species failed. The results of a range of leaching trials resulted in an effective strategy for Ta recovery. A bulk sample of homogenised Ta capacitor scrap was first subjected to microbial leaching using Penicillium simplicissimum, which solubilised manganese and base metals. The residue was subjected to the second leach using 4 M HNO3. This effectively solubilised silver and other impurities. The residue collected after the second leach was pure tantalum in concentrated form. The hybrid model produced derives from observations from previous independent studies and shows that we can effectively recover tantalum along with silver and manganese in an efficient and environmentally friendly manner from tantalum capacitor scrap.


Asunto(s)
Residuos Electrónicos , Penicillium , Plata/química , Manganeso , Reciclaje/métodos , Residuos Electrónicos/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-36767611

RESUMEN

There is growing evidence linking exposure to air pollution and traffic noise with hypertension. The aim of this study was to examine the associations of registered hypertension cases and hypertension rate with exposure to air pollution and road noise. In this cross-sectional study, we linked the information from the NHS Scotland database of 776,579 hypertension patients' registrations and rates per 13.80 people at the Scottish NHS Board, HSCP, Cluster, and GP practice levels. Based on the geospatial attributes, the data on residential areas were added by modelling annual average air pollutant concentrations, including particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and road-traffic noise at different frequency components (Lden). The relationships between exposure to road noise, air pollution, and hypertension were examined using multiple regression and multivariate analysis. Traffic noise and air pollution at various frequency components positively and negatively predicted registered hypertension cases and hypertension rate. Based on the canonical loading technique, the variance explained by the canonical independent variable at a canonical correlation of 0.342 is 89%. There is a significant correlation between joint air pollution and noise at different frequency components and combined registered hypertension cases and hypertension rate. Exploring the combined effects of the two environmental exposures and the joint modelling of noise and air pollutants with hypertension in geospatial views provides an opportunity to integrate environmental and health data to support spatial assessment strategies in public and environmental health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hipertensión , Ruido del Transporte , Humanos , Ruido del Transporte/efectos adversos , Estudios Transversales , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Hipertensión/epidemiología , Hipertensión/etiología , Material Particulado/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
4.
Environ Technol ; 44(28): 4409-4423, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35731237

RESUMEN

Filtration is one of the important technologies for separating suspended particles. Under the condition of gravity compression, the filtration density can be increased and the separation effect of suspended particles can be improved. Considering the complex composition and the difficulty in degrading dye in industrial wastewater, a gravity compression aeration system with a modified polyester fibre ball (denoted as MPFB) was evaluated for the separation of dye from water. Congo red azo dye solution (0-40 mg/L) was selected as the model treatment compound. The MPFB was prepared by adjusting the concentrations of alkali (Quality score 0-25%), ß-cyclodextrin (0∼80 g/L), reaction temperature (40-90°C), and silane coupler concentration (Concentration fractions 0-0.8%). We used Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) to characterise the MPFB. The separation was affected significantly by adsorption conditions such as MPFB dose and pH. The lower the MPFB dose, the higher the expected adsorption capacity. For the treatment of a dye solution at 500 mg/L, 100% removal was achieved with 48 g/L MPFB, at pH 8 during adsorption under non-circulation aeration. For 24 h of reaction, the system could reach the maximum adsorption capacity of 11.2 mg/g, which followed the pseudo-first order kinetics model and the intraparticle diffusion model. We discovered that circulation aeration provided the best adsorption and electrostatic and hydrogen bonding were the dominant components of adsorption. Overall, the system is a promising technology and has the potential to treat large volumes of dye wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Rojo Congo , Temperatura , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Colorantes/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-36554941

RESUMEN

There is mounting evidence that exposure to air pollution and noise from transportation are linked to the risk of hypertension. Most studies have only looked at relationships between single exposures. To examine links between combined exposure to road traffic, air pollution, and road noise. A Casella CEL-63x instrument was used to monitor traffic noise on a number of locations in residential streets in Glasgow, UK during peak traffic hours. The spatial numerical modelling capability of Quantum GIS (abbreviated QGIS) was used to analyse the combined association of noise and air pollution. Based on geospatial mapping, data on residential environmental exposure was added using annual average air pollutant concentrations from local air quality monitoring network, including particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and road-traffic noise measurements at different component frequencies (Lden). The combined relationships between air pollution and traffic noise at different component frequencies were examined. Based on Moran I autocorrelation, geographically close values of a variable on a map typically have comparable values when there is a positive spatial autocorrelation. This means clustering on the map was influenced significantly by NO2, PM10 and PM2.5, and Lden at the majority of monitoring locations. Studies that only consider one of these two related exposures may exaggerate the impact of the individual exposure while underestimating the combined impact of the two environmental exposures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ruido del Transporte , Ruido del Transporte/efectos adversos , Dióxido de Nitrógeno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-36011640

RESUMEN

We compared chemical and microbial leaching for multi-metal extraction from printed circuit boards (PCBs) and tantalum capacitor scrap. A mixed consortium of acidophiles and heterotrophic fungal strains were used in the experiments and compared to chemical leaching using specific acids (sulfuric, citric and oxalic acids). Under optimum conditions, 100% extraction efficiency of Cu, and nearly 85% of Zn, Fe, Al and Ni were achieved from PCB and tantalum capacitor scrap samples using sulfuric acid. The mixed consortium of acidophiles successfully mobilized, Ni and Cu (99% and 96%, respectively) while Fe, Zn, Al and Mn reached an extraction yield of 89, 77, 70 and 43%, respectively, from the PCB samples. For the tantalum capacitor samples, acidophiles mobilized 92% Cu, 88% Ni, 78% Fe, 77% Al, 70% Zn and 57% Mn. Metal mobilization from PCBs and tantalum capacitor scrap by A. niger filtrate showed efficient solubilization of Cu, Fe, Al, Mn, Ni, Pb and Zn at an efficiency of 52, 29, 75, 5, 61, 21 and 35% from PCB samples and 61, 25, 69, 23, 68, 15 and 45% from tantalum capacitor samples, respectively. Microbial leaching proved viable as a method to extract base metals but was less specific for tantalum and precious metals in electronic waste. The implications of these results for further processing of waste electronic and electrical equipment (WEEE) are considered in potential hybrid treatment strategies.


Asunto(s)
Teléfono Celular , Residuos Electrónicos , Residuos Electrónicos/análisis , Electrónica , Metales , Tantalio
7.
Artículo en Inglés | MEDLINE | ID: mdl-35055588

RESUMEN

Waste electrical and electronic equipment (WEEE) presents the dual characteristic of containing both hazardous substances and valuable recoverable materials. Mainly found in WEEE plastics, brominated flame retardants (BFRs) are a component of particular interest. Several actions have been taken worldwide to regulate their use and disposal, however, in countries where no regulation is in place, the recovery of highly valuable materials has promoted the development of informal treatment facilities, with serious consequences for the environment and the health of the workers and communities involved. Hence, in this review we examine a wide spectrum of aspects related to WEEE plastic management. A search of legislation and the literature was made to determine the current legal framework by region/country. Additionally, we focused on identifying the most relevant methods of existing industrial processes for determining BFRs and their challenges. BFR occurrence and substitution by novel BFRs (NBFRs) was reviewed. An emphasis was given to review the health and environmental impacts associated with BFR/NBFR presence in waste, consumer products, and WEEE recycling facilities. Knowledge and research gaps of this topic were highlighted. Finally, the discussion on current trends and proposals to attend to this relevant issue were outlined.


Asunto(s)
Residuos Electrónicos , Retardadores de Llama , Residuos Electrónicos/análisis , Electrónica , Retardadores de Llama/toxicidad , Humanos , Plásticos , Reciclaje
8.
Chemosphere ; 282: 131068, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34107421

RESUMEN

Metal organic framework (MOF) nanoparticles are recognized for their effective removal of metal ions from aqueous systems. However, the application of nanoparticles in a powder form as synthesized is not practical and recovery is not easy. We prepared a recyclable magnetic MOF nanoparticle phase and used a widely available waste biomass to generate biochar to support magnetic nanoparticles applied in the treatment of aqueous antimony pollution. A mushroom waste biochar was used to support a magnetic UIO-66-2COOH (denoted as BSMU). Adsorption of trivalent antimony (Sb (III)) onto the BSMU was evaluated. The results showed that optimum conditions for preparation of the BSMU were the mass ratio of MMOF to biochar 4:1, the temperature 70 °C, the time 4 h, and the initiator 4 mM. Under such conditions, sorption capacity reached 56.49 mg/g for treatment of Sb (III) solution at 100 mg/L and pH 9.1. Alkaline conditions (such as pH 9.1) are more favorable for adsorption than acidic conditions, and coexisting ions including NO3-, Cl-, SO42-, and PO43- had no significant negative effect in adsorption, and with the use of low dose, higher adsorption density achieved. The adsorption followed a pseudo second order kinetics model and Freundlich isotherm model. It resulted in a higher enthalpy changes (ΔHθ) and activation energy (Ea) of 97.56 and 8.772 kJ/mol, respectively, and enhanced the rate pf random contact between antimony and the BSMU, as indicated by a higher entropy change (ΔSθ) up to 360 J/mol·K. As a result, it readily absorbs antimony. These adsorption properties identified in this study would provide a valuable insights into the application of nanoparticles loaded biochar from abundant biomass in environmental remediation.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Adsorción , Antimonio , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Fenómenos Magnéticos , Termodinámica , Contaminantes Químicos del Agua/análisis
9.
Chemosphere ; 262: 127723, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32799138

RESUMEN

Removing dissolved organic matter (DOM) with polyaluminium chloride is one of the primary goals of drinking water treatment. In this study, a new HMW framework was proposed, which divided the factors affecting coagulation into three parts consisting of hydraulic condition (H), metal salt (M), and background water matrix (W). In this framework, H, M and W were assumed to be interacted with each other and combined to determine coagulation efficiency. We investigated the feasibility of the framework to determine the treatment efficiency through mathematical models. Results showed that non-linear artificial neural network (ANN) model was a better fit to the experimental data than the linear partial least squares (PLS) model: the ANN model could explain 76% of the total variations while the PLS could only explain 71%. The PLS did not follow the variations of observed values adequately. These experiments showed that the interaction between the HMW framework components were not simple linear relationships. The ANN model was able to optimize the composition of the HMW framework improving the efficiency of DOM removal through the components of HMW such as velocity gradient (G value), coagulant dosage, solution pH, and background water matrix. Overall, HMW framework is a new classification of factors affecting coagulation, leading to a better understanding of the coagulation process and sensitivity to influencing variables.


Asunto(s)
Modelos Teóricos , Redes Neurales de la Computación , Purificación del Agua/métodos , Hidróxido de Aluminio/química , Agua Potable , Concentración de Iones de Hidrógeno , Metales/química
10.
J Fluoresc ; 30(6): 1383-1396, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32997315

RESUMEN

Fluorescence excitation-emission matrix spectroscopy (EEMs) has become a very popular technique in characterization of aquatic dissolved organic matter (DOM) coupled with a parallel factor (PARAFAC) model, denoted as (EEMs-PARAFAC). This research addresses the poorly researched relationship correlation between dissolved ions and fluorescence in a natural water environment. The relationship between the EEMs-PARAFAC components and ionic composition was studied in freshwater lakes, rivers, and seawater from locations in China. The natural water environment is different from a simulated environment having a fixed ionic composition. We used electrical conductivity (EC) to reflect the ionic strength as an indicator to evaluate the relationship in a series of water bodies. Results show that the EC generally had a positive correlation with DOM in natural water environment, but no correlation was found with water from the highly saline Yellow Sea. The Chaohu Lake samples contained one component having a significant negative correlation with EC, i.e., r > 0.6, p < 0.05, while other surface waters contained components having both positive and negative correlations (r > 0.5, p < 0.05). The negative correlation with EC also highlighted that humic acid-like components and protein-like materials (c1-c3) were positively correlated with DOM, while the protein-like component (c4) was negatively correlated with DOM. The EC equation proposed provided a good fit with the EC values of surface waters. The use of EC would be a useful and rapid method for analyzing the variation in the fluorescence component and its effect on water quality. This study highlights the need to account for variation in EC when assessing EEMs-PARAFAC of natural waters.

11.
Ecotoxicol Environ Saf ; 203: 111055, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888617

RESUMEN

The pollution level of potentially toxic elements (PTEs) in surface soils is detrimental to the ecosystem and human health. In this research, various indices such as an index of geo-accumulation (Igeo), contamination factor (CF), degree of contamination (DC), and principal component analysis (PCA) were implemented to identify and evaluate the soil PTEs pollution; and then human health risk assessment model used to establish the link between heavy metals pollution and human health in the urban region of south India. Results exhibited that the mean concentration of Cr, Cu, Ni and Zn were found to be 1.45-6.03 times greater than the geochemical background values. Cr and Cu were the most profuse PTEs measured in the soils. The pollution indices suggest that soil of the study region is mainly moderate to highly polluted. The non-carcinogenic health risk assessment proposed by the United States Environmental Protection Agency (USEPA) suggested the mean hazard indices (HIs) were below one which denotes no significant of non-carcinogenic risks to both children and adults. Furthermore, carcinogenic risk assessment results advised ~80% of cancer risk was caused by Cr contents, while other heavy metals indicate that neither children nor adults in the study region were of carcinogenic risks.


Asunto(s)
Carcinógenos/análisis , Monitoreo del Ambiente/métodos , Sustancias Peligrosas/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Adulto , Carcinógenos/toxicidad , Niño , Ecosistema , Sustancias Peligrosas/toxicidad , Humanos , India , Metales Pesados/toxicidad , Medición de Riesgo , Contaminantes del Suelo/toxicidad , Estados Unidos , United States Environmental Protection Agency , Urbanización
12.
Artículo en Inglés | MEDLINE | ID: mdl-32916867

RESUMEN

This study assessed the significance and potential impact of potentially toxic element (PTE) (i.e., Mn, Pb, Cu, Zn, Cr, Cd, and Ni) pollution in the surface soil from an abandoned manganese mining area in Xiangtan City, Hunan Province, China, on the health of residents. The risks were sequentially evaluated using a series of protocols including: the geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (RI), and implications for human health from external exposures using the hazard quotient (HQ), hazard index (HI) and carcinogenic risk (CR). The results revealed that Mn and Cd were the major pollutants in the soil samples. The ecological risk assessment identified moderate risks, which were mainly derived from Cd (82.91%). The results of the health risk assessment revealed that generally across the area, the non-carcinogenic risk was insignificant, and the carcinogenic risk was at an acceptable level. However, due to local spatial fluctuation, some of the sites presented a non-carcinogenic risk to children. The soil ingestion pathway is the main route of exposure through both non-carcinogenic and carcinogenic risks, with Mn being the major contributor to non-carcinogenic risk, with Cr and Cd the major contributors to carcinogenic risk. In addition, three pollution sources were identified through the Pearson correlation coefficient and principal component analysis (PCA), which included: a. mining activities and emissions from related transportation; b. natural background; c. agricultural management practices and municipal sewage discharge. The study provides information on the effects of spatial variation for the development of the abandoned mining areas and a useful approach to the prioritization of locations for the development and utilization of soil in these areas in China.


Asunto(s)
Metales Pesados , Minería , Contaminantes del Suelo , Niño , China , Ciudades , Monitoreo del Ambiente , Humanos , Manganeso/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
13.
J Fluoresc ; 30(5): 1271-1279, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32767189

RESUMEN

Chemical oxidation is a key technique used in dye wastewater treatment via the formation of hydroxyl radicals. To obtain optimal treatment effects, it is critical to understand the interaction of the molecular structure of the dye with the hydroxyl radical. We evaluated fluorescence excitation-emission matrix spectroscopy to study the decay of an azo-dye (Procion Red MX-5B) by a hydroxyl radical generated from catalytic Fe (III) on H2O2. Results showed that fluorescence signal reliably indicated the variations of the chemical groups and components during degradation, and the degradation could be divided into three stages: initial degradation (decolorisation), rapid intermediate degradation, and final degradation. Under control of uncorrected matrix correlation, the fluorescence fractions could be fitted successfully by parallel factor model (PARAFAC) model: two fluorescence components in initial degradation including mono substituted benzene and mono substituted naphthalene, three components as multi substituted benzene in rapid degradation, and no components could be resolved in the final degradation. The results from the study demonstrate the utility fluorescence characterization of dye degradation mechanisms and enhance the understanding of the degradation mechanisms.


Asunto(s)
Colorantes/química , Catálisis , Compuestos Férricos/química , Peróxido de Hidrógeno/química , Radical Hidroxilo/síntesis química , Radical Hidroxilo/química , Estructura Molecular , Oxidación-Reducción , Espectrometría de Fluorescencia , Aguas Residuales/química
14.
Curr Microbiol ; 77(9): 2071-2083, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32474703

RESUMEN

How to effectively remove excess Sb(III) in the water environment by biosorption is receiving close attention in the international scientific community. To obtain the maximum biosorption efficiency, response surface methodology (RSM) was employed to optimize a total of 13 factors for biosorption of Sb(III) onto living Rhodotorula mucilaginosa DJHN070401. The mechanism of biosorption and bioaccumulation was also studied. The results showed that biosorption reached 56.83% under the optimum conditions. Besides, pH, Fe2+, and temperature are significant influencing factors, and control of Ca2+ and Fe2+ has a beneficial impact on Sb(III) biosorption. The characterization explained that physical adsorption occurred readily on the loose and porous surface of DJHN070401 where carboxyl, amidogen, phosphate group, and polysaccharide C-O functional groups facilitated absorption by complexation with Sb(III), accompanied by ion exchange of Na+, Ca2+ ions with Sb(III). It was also noted that the living cell not only improved the removal efficiency in the presence of metabolic inhibitors but also prevented intracellular Sb(III) being re-released into the environment. The results of this study underpin improved and efficient methodology for biosorption of Sb(III) from wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Rhodotorula , Aguas Residuales , Contaminantes Químicos del Agua/análisis
15.
Chemosphere ; 247: 125921, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31972494

RESUMEN

Dissolved organic matter (DOM) is not only a vector for the migration of aquatic environmental pollutants, but is also key to the control of water pollution. Economic and effective DOM removal through coagulation is essential in water treatment processes. This work investigated the role of carboxylated magnetic metal organic frameworks (MMOFs) nanoparticles in polymeric iron-based coagulation for the removal of aquatic DOM using a MMOFs-doped polyferric iron-based coagulant (MMOF-PIC). Analytical methodologies and tools used in this research included scanning electron microscopy (SEM), zeta potential, molecular weight cut off (MWCO), vibrating sample magnetometer (VSM) measurement, excitation emission matrix spectroscopy (EEMs), and X-ray photoelectron spectroscopy (XPS). The results showed that MMOF-PIC had the potential to change the structure of the polyferric iron-based coagulant (PIC) and charge, as determined by a porous surface morphology, a higher medium polymeric species distribution, and a more positive zeta potential. The MMOFs consequently enhanced PIC action on the removal of UV254 exposed DOM species with molecular weight <30 kDa, including aromatic CC based compounds, org-N as primary amines and amide/peptide bound species, water containing microbial metabolites and protein-like materials. The coagulation of DOM was enhanced by improving charge neutralization, adsorption-bridging and sweep-flocculation in the presence of MMOFs nanoparticles. This was due to hydrogen bonds, π-π bonds and covalent bonds resulting from actions of nanoparticles and pollutants. These results indicate that magnetic MOF nanoparticles can improve PIC coagulation for DOM, enhancing future removal of target pollutants.


Asunto(s)
Sustancias Húmicas/análisis , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Floculación , Hierro/química , Fenómenos Magnéticos , Nanopartículas , Compuestos Orgánicos/química , Contaminantes Químicos del Agua/análisis
16.
Environ Geochem Health ; 42(4): 1057-1068, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31119572

RESUMEN

The direct impacts of anthropogenic pollution are widely known public and environmental health concerns, and details on the indirect impact of these are starting to emerge, for example affecting the environmental microbiome. Anthropogenic activities throughout history with associated pollution burdens are notable contributors. Focusing on the historically heavily industrialised River Clyde, Scotland, we investigate spatial and temporal contributions to stressful/hostile environments using a geochemical framework, e.g. pH, EC, total organic carbon and potentially toxic elements: As, Co, Cr, Cu, Ni, Pb and Zn and enrichment indicators. With regular breaches of the sediment quality standards in the estuarine system we focused on PTE correlations instead. Multivariate statistical analysis (principle component analysis) identifies two dominant components, PC1: As, Cr, Cu, Pb and Zn, as well as PC2: Ni, Co and total organic carbon. Our assessment confirms hot spots in the Clyde Estuary indicative of localised inputs. In addition, there are sites with high variability indicative of excessive mixing. We demonstrate that industrialised areas are dynamic environmental sites dependant on historical anthropogenic activity with short-scale variation. This work supports the development of 'contamination' mapping to enable an assessment of the impact of historical anthropogenic pollution, identifying specific 'stressors' that can impact the microbiome, neglecting in estuarine recovery dynamics and potentially supporting the emergence of antimicrobial resistance in the environment.


Asunto(s)
Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Ecosistema , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos/química , Concentración de Iones de Hidrógeno , Desarrollo Industrial , Metales Pesados/análisis , Análisis Multivariante , Ríos , Escocia , Análisis Espacio-Temporal
18.
Environ Geochem Health ; 42(7): 1965-1976, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31705399

RESUMEN

The pollution from large-scale manganese mining and associated industries in Xiangtan (south Central China) has created a significant burden on the local environment. The proximity of mining, and other industrial activity to the local population, is of concern and impact of past industrial on the food chain was evaluated by the assessment of common food groups (rice, soybean, and sweet potato), and the associated soil and water in the region. We focused on specific potentially toxic elements (PTEs): Mn, Pb, Cd, Cr, Cu, and Zn associated with industrial activity, identifying the distribution of pollution, the potential significance of total health index (THI) for local people and its spatial distribution. The study area showed severe contamination for Mn, followed by Cd and Pb, while other PTEs showed relatively light levels of pollution. When analyzing the impact on crops exceeding the tolerance limit, the dominant PTEs were Mn, Cd, and Pb, with lower significance for Zn, Cu, and Cr. The average THI value for adults is 4.63, while for children, is 5.17, greatly exceeding the recommended limit (HQ > 1), confirming a significant health risk. In the spatial distribution of the THI, the region shows strong association with the transport and industrial processing infrastructure. Long-term management needs to consider remediation aligned to specific industrial operations and enhance contamination control measures of ongoing activity.


Asunto(s)
Productos Agrícolas/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Adulto , Niño , China , Agua Potable/análisis , Monitoreo del Ambiente , Cadena Alimentaria , Contaminación de Alimentos/análisis , Humanos , Industrias , Ipomoea batatas/química , Metales Pesados/toxicidad , Minería , Oryza/química , Medición de Riesgo , Contaminantes del Suelo/toxicidad , Glycine max/química , Contaminantes Químicos del Agua/toxicidad
19.
Environ Monit Assess ; 191(5): 267, 2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-30955117

RESUMEN

This study focuses on the assessment of surface soils from industrially polluted region (El Tebbin) of southern Cairo, Egypt. The impact of agricultural, residential and industrial land use on soils developed from Nile river sediments has significantly compromised their function. Previous evidence has shown that the food chain is contaminated and enhances risk of contaminant exposure of the residential communities. This study investigates factors controlling potentially toxic element (PTE) distribution (Co, Ni, Pb, Cd, Zn, Cr and Cu) in El Tebbin soils and provide estimates of their mobility and bioavailability. The PTE concentrations are characterised by high variability as result of the variety of natural and anthropogenic influences. Highest spatial variability is found for Zn, Cd, Pb and Cu (C.V = 260.0%, 280.4%, 140.8% and 159.6% respectively) and enrichment factors indicate strong anthropogenic inputs. For Co and Ni, relatively low spatial variability (C.V = 65.8% and 45.0% respectively) with depletion in Ni suggests a relatively minor contribution from anthropogenic sources. For Cr, a more uniform distribution pattern showing depletion to minimal enrichment across the study area (C.V = 19.2%) reflects almost exclusive lithogenic control. Using principle component analysis (PCA) to explore concentration data reveals that the major inputs affecting PTE distribution are modified by primary soil properties (texture and pH). Their relative bioavailability (identified through sequential chemical extraction) relates strongly to local input sources. Those elements dominated by lithogenic input (Ni and Co) were found predominantly in soil residual fractions (95.6% and 90.5% respectively), while elements with stronger anthropogenic contributions (Cd, Zn, Pb and Cu) showed much higher portion in the more mobile and bioavailable fractions obtained from sequential chemical extraction, with average proportions of the totals being 62.6%, 57%, 40.7% and 39.2% respectively. Those PTEs with strong anthropogenic influence are potentially much more mobile for bioaccumulation in food chain with increased health risk for exposed residents and are confirmed by elevated concentrations of Cd, Zn, Pb and Cu recorded in local plant species. The main pollution sources were further highlighted by cluster analysis and showed vehicle traffic and specific industrial activities but which varied significantly from site to site. The identification of sources through the approach developed here allows prioritisation of monitoring and regulatory decisions by the local government to reduce further environmental exposure of the local population.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Agricultura , Egipto , Contaminación Ambiental/análisis , Ríos/química , Suelo/química
20.
Environ Monit Assess ; 191(3): 192, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30810865

RESUMEN

There is a pressing need for innovative waste management approaches as environmental regulations become more stringent worldwide alongside increasing demand for a more circular economy. Sequential chemical extraction (SE) analysis, which has previously been applied to environmental media such as soils and sediments, offers the potential to provide an understanding of the composition of solid steel processing by products, aiding the waste classification process and improving environmental protection. The definition of seven-phase associations through a SE method evaluated in this study were for (1) water soluble, (2) ion exchangeable, (3) carbonate, (4) amorphous Fe-Mn oxides, (5) crystalline Fe-Mn oxides, (6) sulphides and (7) silicate residues. Steel waste by-products (flue dust and filter cake) were evaluated for both extracted components (ICP analysis) and residual phases (using powder X-ray diffraction, SEM and FTIR), to model the transformations taking place during extraction. The presence and removal of important potentially toxic element (PTE) host solid phases were confirmed during extraction. The SE protocol provides key information, particularly for the association of potentially toxic elements with the first three extracts, which are most sensitive in waste management processes. The water-soluble phase is the most available followed by ion-exchangeable and carbonate fractions, all representing phases more sensitive to environmental change, in particular to pH. This study demonstrates that the distribution of potentially toxic elements such as zinc, lead and copper between sensitive and immobile phases can be reliably obtained in technological process by-products. We demonstrate that despite heterogeneity as a major variable, even for fine particulate matter, SE can provide more refined classification with information to identify reuse potential and ultimately minimise hazardous waste streams.


Asunto(s)
Fraccionamiento Químico/métodos , Monitoreo del Ambiente , Residuos Peligrosos/análisis , Residuos Industriales/análisis , Acero , Administración de Residuos/métodos , Cobre/análisis , Polvo/análisis , Material Particulado/análisis , Suelo/química , Contaminantes del Suelo/análisis , Sulfuros/análisis , Zinc/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...