Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 7(12): 1980-1985, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34963891

RESUMEN

Molnupiravir (MK-4482) is an investigational antiviral agent that is under development for the treatment of COVID-19. Given the potential high demand and urgency for this compound, it was critical to develop a short and sustainable synthesis from simple raw materials that would minimize the time needed to manufacture and supply molnupiravir. The route reported here is enabled through the invention of a novel biocatalytic cascade featuring an engineered ribosyl-1-kinase and uridine phosphorylase. These engineered enzymes were deployed with a pyruvate-oxidase-enabled phosphate recycling strategy. Compared to the initial route, this synthesis of molnupiravir is 70% shorter and approximately 7-fold higher yielding. Looking forward, the biocatalytic approach to molnupiravir outlined here is anticipated to have broad applications for streamlining the synthesis of nucleosides in general.

2.
Org Lett ; 19(22): 6036-6039, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29083918

RESUMEN

Exploratory studies on the sequential exo-mode oxacyclizations of acyclic polyene precursors have provided a substantial substructure of brevenal, including the fused tricyclic polyether with stereochemical patterns consistent with the AB and BC ring fusions. The synthesis of acyclic substrates featured two variations of Cr(II)/Ni(II) couplings for preparing 1,1-disubstituted allylic alcohols. A sequence of iodine-promoted cycloetherification, base-promoted intramolecular conjugate addition, and mercury-promoted cycloetherification produced the tricyclic substructure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...